留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

山东牟乳成矿带金青顶矿区三维综合找矿模型的构建及深部预测

李金岷 黄鑫 石文杰 王勇军 崔凯 孔凡顺 谭俊

李金岷, 黄鑫, 石文杰, 王勇军, 崔凯, 孔凡顺, 谭俊. 山东牟乳成矿带金青顶矿区三维综合找矿模型的构建及深部预测[J]. 地质科技通报, 2021, 40(6): 151-164. doi: 10.19509/j.cnki.dzkq.2021.0615
引用本文: 李金岷, 黄鑫, 石文杰, 王勇军, 崔凯, 孔凡顺, 谭俊. 山东牟乳成矿带金青顶矿区三维综合找矿模型的构建及深部预测[J]. 地质科技通报, 2021, 40(6): 151-164. doi: 10.19509/j.cnki.dzkq.2021.0615
Li Jinmin, Huang Xin, Shi Wenjie, Wang Yongjun, Cui Kai, Kong Fanshun, Tan Jun. Three-dimensional comprehensive model and deep prediction of the Jinqingding gold deposit, Muping-Rushan metallogenic belt, Shandong, China[J]. Bulletin of Geological Science and Technology, 2021, 40(6): 151-164. doi: 10.19509/j.cnki.dzkq.2021.0615
Citation: Li Jinmin, Huang Xin, Shi Wenjie, Wang Yongjun, Cui Kai, Kong Fanshun, Tan Jun. Three-dimensional comprehensive model and deep prediction of the Jinqingding gold deposit, Muping-Rushan metallogenic belt, Shandong, China[J]. Bulletin of Geological Science and Technology, 2021, 40(6): 151-164. doi: 10.19509/j.cnki.dzkq.2021.0615

山东牟乳成矿带金青顶矿区三维综合找矿模型的构建及深部预测

doi: 10.19509/j.cnki.dzkq.2021.0615
基金项目: 

山东省煤田地质局2019年度科研专项奖励基金项目 鲁煤地科字[2019]4号

山东省地勘基金项目 鲁勘字(2018)15号

山东省自然科学基金面上项目 ZR2020MD031

详细信息
    作者简介:

    李金岷(1998-), 男, 现正攻读矿产普查与勘探专业硕士学位, 主要从事矿床及矿产勘查研究工作。E-mail: jmli1998@163.com

    通讯作者:

    谭俊(1982-), 男, 副教授, 主要从事矿床地球化学、成矿规律与成矿预测研究工作。E-mail: tanjun@cug.edu.cn

  • 中图分类号: P631.4

Three-dimensional comprehensive model and deep prediction of the Jinqingding gold deposit, Muping-Rushan metallogenic belt, Shandong, China

  • 摘要: 探讨山东牟平-乳山成矿带金青顶金矿区成矿元素地球化学场三维分布特征,总结成矿规律,建立三维综合找矿模型,为金矿深部成矿预测提供更为丰富的信息,指导矿山生产与发展方向。针对金青顶矿区深部找矿问题,在全面收集已有地质、矿产资料的基础上,结合野外实地调查,应用三维建模与可视化技术、构造叠加晕及地质统计学理论与方法,构建矿床地质、地球化学场等方面的三维综合找矿模型,将金青顶矿床的预测评价研究拓展到三维空间,揭示了区内成矿地质特征和地球化学异常表征,据此探讨了矿体及地球化学场的三维空间分布规律。并在此基础上,开展了矿区的地质-地球化学综合信息分析与深部预测评价,减少了深部预测的不确定性。矿体三维模型显示,矿体呈现中间宽两端窄的形态,有向深部尖灭的趋势。三维地球化学场分布特征显示,Au、As、Sb、Hg、Cu、W、Sn、Co、Ni元素及组合因子主要分布于矿体浅部,向深部呈现元素场强度下降的趋势;Mo、Bi元素主要分布于矿体深部;Ag、Pb、Zn元素分布较分散,存在多个矿化中心。地质-地球化学三维模型显示,组合因子高得分区域与组合矿物富集区域相符合,Au成矿作用主要发生于矿体浅部,深部成矿作用减弱。应用格里戈良分带指数法求取Ⅱ号金矿体的原生晕垂向分带序列为Sb-Cu-Ni-Au-Sn-W-Hg-As-Co-Ag-Zn-Pb-Mo-Bi,该序列与单一期次成矿垂向分带序列进行对比无明显反常现象,指示Ⅱ号矿体当前开采深度以下成矿潜力不高。研究结果显示,在综合找矿模型指导下,基于三维地球化学空间场晕模型的三维地质、地球化学异常信息的展示、提取与综合分析,可以有效地评价深部成矿潜力,为深部成矿预测研究提供了新思路,有利于指导矿山工作的部署。综合分析认为金青顶Ⅱ号主矿体在-1 200 m以下找矿潜力一般,不宜继续进行大规模的深部探矿。

     

  • 图 1  山东牟乳地区区域地质略图(底图据文献[10]修改)

    Figure 1.  Regional geological sketch of the Muping-Rushan area, Shandong

    图 2  山东省乳山市金青顶金矿区地形地质略图

    Figure 2.  Geological sketch of the Jinqingding gold deposit in the Rushan, Shandong

    图 3  三维地球化学场模型构建工作流程

    Figure 3.  3D modelling process of geochemistry field

    图 4  金青顶金矿床构造叠加晕数据点分布图

    Figure 4.  3D distribution of structural superimposed halo data of the Jinqingding deposit

    图 5  金青顶金矿体三维实体模型

    Figure 5.  3D model of orebody of the Jinqingding gold deposit

    图 6  金青顶金矿三维地球化学场模型

    Figure 6.  3D geochemistry model of the Jinqingding gold deposit

    图 7  金青顶金矿二维地球化学图

    Figure 7.  2D geochemistry plot of the Jinqingding gold deposit

    图 8  金青顶金矿Au、As、Sb、Hg三维地球化学场模型

    Figure 8.  3D geochemistry field model of Au, As, Sb and Hg of the Jinqingding gold deposit

    图 9  金青顶金矿Ag、Cu、Pb、Zn三维地球化学场模型

    Figure 9.  3D geochemistry field model of Ag, Cu, Pb and Zn of the Jinqingding gold deposit

    图 10  金青顶金矿W、Sn、Mo、Bi、Co、Ni三维地球化学场模型

    Figure 10.  3D geochemistry field model of W, Sn, Mo, Bi, Co and Ni of the Jinqingding gold deposit

    图 11  金青顶金矿成矿元素相关性系数矩阵

    Figure 11.  Correlation coefficient matrix of ore-forming elements of the Jinqingding gold deposit

    图 12  金青顶金矿成矿元素R型聚类分析谱系图

    Figure 12.  R-type cluster analysis pedigree of ore-forming elements of the Jinqingding gold deposit

    图 13  金青顶金矿三维地球化学场因子计量模型

    Figure 13.  3D geochemistry field model of factor measurement of the Jinqingding gold deposit

    图 14  金青顶金矿构造叠加晕模式图(底图据文献[9]修改)

    Figure 14.  Structural superimposed halo model of the Jinqingding gold deposit

    图 15  金青顶金矿三维地质-地球化学模型

    Figure 15.  3D geology-geochemistry model of the Jinqingding gold deposit

    图 16  金青顶金矿-945 m中段现象

    Figure 16.  -945 m underground phenomenon of the Jinqingding gold deposit

    表  1  数据类型及数量

    Table  1.   Data type and quantity

    数据类型 数量
    区域地质图 7张
    地形地质图 12张
    垂直纵投影图 40张
    中段地质图 40张
    勘探线剖面图 89张
    采样点化验数据 1 027组
    数据库 3个
    下载: 导出CSV

    表  2  金青顶金矿构造叠加晕元素分带参数

    Table  2.   Parameters of structure superimposed halo elements of the Jinqingding gold deposit

    元素 Au As Sb Ag Cu Pb Zn Bi Mo Co Ni W Sn Hg
    wB/10-6 wB/10-9
    外带 0.5 10 0.8 5 20 30 80 0.8 6 20 10 10 5 20
    中带 5 20 1.5 10 80 120 200 3 15 40 20 20 10 40
    内带 10 80 3 20 480 480 800 12 25 60 40 40 20 80
    高浓带 20 320 6 40 960 960 1 600 36 100 120 80 80 40 160
    下载: 导出CSV

    表  3  因子分析总方差特征表

    Table  3.   Total variance feature of factor analysis

    成分 初始特征值 提取平方和载入 旋转平方和载入
    合计 方差/% 累积/% 合计 方差/% 累积/% 合计 方差/% 累积/%
    F1 5.189 37.067 37.067 5.189 37.067 37.067 4.686 33.469 33.469
    F2 2.052 14.656 51.724 2.052 14.656 51.724 2.096 14.971 48.440
    F3 1.600 11.430 63.153 1.600 11.430 63.153 2.060 14.714 63.153
    下载: 导出CSV

    表  4  旋转后因子载荷矩阵

    Table  4.   Rotated factor load matrix

    元素 成分
    F1 F2 F3
    Au 0.866 0.056 0.121
    As 0.827 0.115 0.111
    Sb 0.289 -0.049 0.672
    Hg 0.647 -0.128 0.519
    Ag 0.839 0.319 -0.093
    Cu 0.486 0.085 0.489
    Pb 0.140 0.880 -0.019
    Zn 0.210 0.694 0.103
    Bi 0.674 0.200 -0.336
    Mo 0.090 0.709 -0.029
    Co 0.902 0.121 0.081
    Ni 0.649 0.190 0.088
    W -0.220 -0.117 0.748
    Sn -0.018 0.301 0.605
    下载: 导出CSV
  • [1] Houlding S W. 3D geoscience modeling: Computer techniques for geological characterization[M]. London: Springer-Verlag, 1993.
    [2] 毛先成. 三维数字矿床与隐伏矿体立体定量预测研究[D]. 长沙: 中南大学, 2006.

    Mao X C. Research on 3D digital deposit and stereo quantitative prediction of concealed ore body[D]. Changsha: Central South University, 2006 (in Chinese with English abstract).
    [3] 王守民. 三维可视化技术在数字矿山中的应用研究[J]. 世界有色金属, 2019, 26(7): 12, 14. https://www.cnki.com.cn/Article/CJFDTOTAL-COLO201907007.htm

    Wang S M. Application research of 3D visualization technology in digital mine[J]. World Nonferrous Metals, 2019, 26(7): 12, 14 (in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-COLO201907007.htm
    [4] Zhang Z Q, Wang G W, Ma Z B, et al. Interactive 3D modeling by integration of geoscience datasets for exploration targeting in Luanchuan Mo polymetallic district, China[J]. Natural Resources Research, 2018, 27(3): 315-346. doi: 10.1007/s11053-017-9353-4
    [5] 王方里. 三维地质建模技术在地勘找矿中的应用[J]. 世界有色金属, 2020, 27(14): 145-146. doi: 10.3969/j.issn.1002-5065.2020.14.067

    Wang F L. Application of 3D geological modeling technology in geological prospecting[J]. World Nonferrous Metals, 2020, 27(14): 145-146 (in Chinese with English abstract). doi: 10.3969/j.issn.1002-5065.2020.14.067
    [6] 陈麒玉, 刘刚, 何珍文, 等. 面向地质大数据的结构-属性一体化三维地质建模技术现状与展望[J]. 地质科技通报, 2020, 39(4): 51-58. https://dzkjqb.cug.edu.cn/CN/abstract/abstract9999.shtml

    Chen L Y, Liu G, He Z W, et al. Current situation and prospect of structure-attribute integrated 3D geological modeling technology for geological big data[J]. Bulletin of Geological Science and Technology, 2020, 39(4): 51-58 (in Chinese with English abstract). https://dzkjqb.cug.edu.cn/CN/abstract/abstract9999.shtml
    [7] Fisher L A, Cleverley J S, Pownceby M, et al. 3D representation of geochemical data, the corresponding alteration and associated REE mobility at the Ranger uranium deposit, Northern Territory, Australia[J]. Mineralium Deposita, 2013, 48(8): 947-966. doi: 10.1007/s00126-013-0463-6
    [8] 李惠, 禹斌, 魏江, 等. 矿区深部盲矿预测新突破: 构造叠加晕找盲矿法[J]. 矿产勘查, 2019, 10(12): 3070-3073. doi: 10.3969/j.issn.1674-7801.2019.12.033

    Li H, Yu B, Wei J, et al. New breakthrough in the prediction of deep blind ore in mining area: Structural superimposed halo for blind ore method[J]. Mineral Exploration, 2019, 10(12): 3070-3073 (in Chinese with English abstract). doi: 10.3969/j.issn.1674-7801.2019.12.033
    [9] 李惠, 禹斌, 李德亮, 等. 构造叠加晕找盲矿法及研究方法[J]. 地质与勘探, 2013, 49(1): 154-161. https://www.cnki.com.cn/Article/CJFDTOTAL-DZKT201301017.htm

    Li H, Yu B, Li D L, et al. Prediction of blind ore bodies using structural superimposed halo and research methods[J]. Geology and Exploration, 2013, 49(1): 154-161 (in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-DZKT201301017.htm
    [10] 陈海燕. 胶东金青顶金矿成因矿物学与深部远景研究[D]. 北京: 中国地质大学(北京), 2010.

    Chen H Y. Genetic mineralogy and deep prospects of Jinqingding gold deposit in Rushan, east Shandong Province[D]. Beijing: China University of Geosciences(Beijing), 2010 (in Chinese with English abstract).
    [11] 刘善宝. 山东乳山金青顶金矿田成矿规律及其成矿远景研究[D]. 西安: 长安大学, 2005.

    Liu S B. Themetallegenic regularity of the Jinqingding gold deposit field and ore prospecting, in Rushan, Shandong Province[D]. Xi'an: Chang'an University, 2005 (in Chinese with English abstract).
    [12] 宋波. 山东乳山金矿带金矿矿床成因与找矿标志分析[J]. 世界有色金属, 2019, 26(17): 82, 84. https://www.cnki.com.cn/Article/CJFDTOTAL-COLO201917053.htm

    Song B. The genesis and prospecting marks of the gold deposits in Shandong's Rushan gold belt[J]. World Nonferrous Metals, 2019, 26(17): 82, 84 (in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-COLO201917053.htm
    [13] 宋明春, 林少一, 杨立强, 等. 胶东金矿成矿模式[J]. 矿床地质, 2020, 39(2): 215-236. https://www.cnki.com.cn/Article/CJFDTOTAL-KCDZ202002002.htm

    Song M C, Lin S Y, Yang L Q et al. Metallogenic model of Jiaodong peninsula gold deposits[J]. Mineral Deposits, 2020, 39(2): 215-236 (in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-KCDZ202002002.htm
    [14] Hu R Z, Burnard P G, Bi X W, et al. Helium and argon isotope geochemistry of alkaline intrusion-associated gold and copper deposits along the Red River-Jinshajiang fault belt, SW China[J]. Chemical Geology, 2004, 203: 305-317. doi: 10.1016/j.chemgeo.2003.10.006
    [15] Cai Y C, Fan H R, Santosh M, et al. Evolution of the lithospheric mantle beneath the southeastern North China Craton: Constraints from mafic dikes in the Jiaobei terrain[J]. Gondwana Research, 2013, 24(2): 601-621. doi: 10.1016/j.gr.2012.11.013
    [16] Deng J, Yang L Q, David I G, et al. An integrated mineral system model for the gold deposits of the giant Jiaodong Province, eastern China[J]. Earth-Science Reviews, 2020, 208(9): 274-295. http://www.sciencedirect.com/science/article/pii/S0012825220303202
    [17] 张铭, 谭俊, 王怀洪, 等. 山东范家庄金矿床S、Pb同位素组成及对成矿物质来源的示踪[J]. 地质科技情报, 2019, 38(4): 124-133. https://www.cnki.com.cn/Article/CJFDTOTAL-DZKQ201904013.htm

    Zhang M, Tan J, Wang H H, et al. Sulfur and lead isotopic compositions of the Fanjiazhuang gold deposit and their implications for sources of ore-forming materials, Shandong Province[J]. Geological Science and Technology Information, 2019, 38(4): 124-133 (in Chinese with English abstract https://www.cnki.com.cn/Article/CJFDTOTAL-DZKQ201904013.htm
    [18] Bi S J, Zhao X F. 40Ar/39Ar dating of the Jiehe gold deposit in the Jiaodong Peninsula, Eastern North China Craton: Implications for regional gold metallogeny[J]. Ore Geology Reviews, 2017, 86(6): 639-651. http://smartsearch.nstl.gov.cn/paper_detail.html?id=721f61ba027502db893467aa5e8ed5a7
    [19] Li L, Li S R, Santosh M, et al. Dyke swarms and their role in the genesis of world-class gold deposits: Insights from the Jiaodong Peninsula, China[J]. Journal of Asian Earth Sciences, 2016, 130(15): 2-22. http://www.researchgate.net/profile/Sheng-Rong_Li/publication/305385799_Dyke_swarms_and_their_role_in_the_genesis_of_world-class_gold_deposits_Insights_from_the_Jiaodong_peninsula_China/links/57a407f108ae455e8534d6b8.pdf
    [20] Li S R, Santosh M, Zhang H F, et al. Inhomogeneous lithospheric thinning in the central North China Craton: Zircon U-Pb and S-He-Ar isotopic record from magmatism and metallogeny in the Taihang Mountains[J]. Gondwana Research, 2013, 23(1): 141-160. doi: 10.1016/j.gr.2012.02.006
    [21] Liu S, Hu R Z, Gao S, et al. Petrogenesis of Late Mesozoic mafic dykes in the Jiaodong Peninsula, eastern North China Craton and implications for the foundering of lower crust[J]. Lithos, 2009, 113(3/4): 621-639. http://www.sciencedirect.com/science/article/pii/S0024493709002801
    [22] 宋英昕, 宋明春, 孙伟清, 等. 胶东金矿成矿时代及区域地壳演化: 基性脉岩的SHRIMP锆石U-Pb年龄及其地质意义[J]. 地质通报, 2018, 37(5): 908-919. https://www.cnki.com.cn/Article/CJFDTOTAL-ZQYD201805013.htm

    Song Y X, Song M C, Sun W Q, et al. Metallogenic epoch and regional crust evolution in the Jiaodong gold deposit, Shandong Province: Evidence from SHRIMP zircon U-Pb ages of mafic dykes[J]. Geological Bulletin of China, 2018, 37(5): 908-919 (in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-ZQYD201805013.htm
    [23] 刘执腾. 山东地区金矿床地球化学找矿模型[D]. 北京: 中国地质大学(北京), 2018.

    Liu Z T. Geochemical exploration model of gold deposits in Shandong Province[D]. Beijing: China University of Geosciences(Beijing), 2018 (in Chinese with English abstract).
    [24] Xu W G, Fan H R, Yang K F, et al. Gold mineralizing efficiency during hydrothermal alteration of the Mesozoic granitoids in the northwest Jiaodong Peninsula: Contrasting conditions between the Guojialing and Linglong plutons[J]. Chemie der Erde - Geochemistry - Interdisciplinary Journal for Chemical Problems of the Geosciences and Geoecology, 2017, 77(3): 387-398. http://www.sciencedirect.com/science/article/pii/S0009281916302938
    [25] 李胜荣, 陈光远, 绍伟, 等. 胶东乳山金矿田成因矿物学[M]. 北京: 地质出版社, 1996.

    Li S R, Chen G Y, Shao W, et al. Genetic mineralogy of Rushan gold field in Jiaodong[M]. Beijing: Geological Publishing House, 1996 (in Chinese).
    [26] Stephanie E M, Andrew G T, Roberto F W, et al. Implications of pyrite geochemistry for gold mineralisation and remobilisation in the Jiaodong gold district, northeast China[J]. Ore Geology Reviews, 2015, 71(12): 150-168. http://www.researchgate.net/profile/Andrew_Tomkins4/publication/276486183_Implications_of_pyrite_geochemistry_for_gold_mineralisation_and_remobilisation_in_the_Jiaodong_gold_district_northeast_China/links/55ea14a108aeb6516265e28d.pdf
    [27] 崔举超. 胶东牟-乳金成矿带成因矿物学研究及其找矿意义[D]. 北京: 中国地质大学(北京), 2012.

    Cui J C. Genetic mineralogy in gold ore-forming belt of Muping-Rushan in Jiaodong[D]. Beijing: China University of Geosciences(Beijing), 2012 (in Chinese with English abstract).
    [28] Hu F F, Fan H R, Yang J H, et al. Mineralizing age of the Rushan lode gold deposit in the Jiaodong Peninsula: SHRIMP U-Pb dating on hydrothermal zircon[J]. Chinese Science Bulletin, 2004, 49(3): 1629-1636. http://www.cqvip.com/QK/86894X/2004015/10501983.html
    [29] 尹升, 张海芳, 王芳, 等. 山东金青顶金矿床Ⅱ号矿体成矿特征[J]. 山东国土资源, 2015, 31(11): 9-14. doi: 10.3969/j.issn.1672-6979.2015.11.003

    Yin S, Zhang H F, Wang F, et al. Metallogenic characteristics of No. Ⅱ orebody in Jinqingding gold deposit in Shandong Province[J]. Shandong Land and Resources, 2015, 31(11): 9-14 (in Chinese with English abstract). doi: 10.3969/j.issn.1672-6979.2015.11.003
    [30] Ma L, Jiang S Y, Hofmann A W, et al. Lithospheric and asthenospheric sources of lamprophyres in the Jiaodong Peninsula: A consequence of rapid lithospheric thinning beneath the North China Craton?[J]. Geochinica et Cosmochimica Acta, 2014, 124(1): 250-271. http://www.sciencedirect.com/science/article/pii/S0016703713005449
    [31] Chen B H, Deng J, Wei H T, et al. Trace element geochemistry in quartz in the Jinqingding gold deposit, Jiaodong Peninsula, China: Implications for the gold precipitation mechanism[J]. Minerals, 2019, 9(5): 326-336. doi: 10.3390/min9050326
    [32] Chen H Y, Li S R, Zhang X B, et al. Wallrock alteration and gold mineralization in the Jinqingding gold deposit, eastern Shandong Province[J]. Bulletin of Mineralogy Petrology & Geochemistry, 2012, 31(1): 5-13. http://www.researchgate.net/publication/281527290_Wall_rock_alteration_and_gold_mineralization_in_the_Jinqingding_gold_deposit_eastern_Shandong_province
    [33] Li N, Song X L, Xiao K Y, et al. Part Ⅱ: A demonstration of integrating multiple-scale 3D modelling into GIS-based prospectivity analysis: A case study of the Huayuan-Malichang district, China[J]. Ore Geology Reviews, 2018, 95(4): 292-305. http://www.sciencedirect.com/science/article/pii/S0169136817309927
    [34] 李惠. 山东省乳山金青顶金矿跟踪研究报告[R]. 河北保定: 中国冶金地质总局地球物理勘查院物探中心, 2010.

    Li H. Tracking research report ofJinqingding gold deposit in Rushan, Shandong Province[R]. Baoding Hebei: Geophysical Exploration Center, Geopysical Exploration Academy of China Metallurgical Geology Bureau, 2010.
    [35] Chen J P, Shi R, Chen Z P, et al. 3D positional and quantitative prediction of the Xiaoqinling gold ore belt in Tongguan, Shanxi, China[J]. Acta Geologica Sinica, 2012, 86(3): 653-660. doi: 10.1111/j.1755-6724.2012.00693.x
    [36] 王恺其, 肖凡. 多点地质统计学的理论、方法、应用及发展现状[J]. 地质科技情报, 2019, 38(6): 256-268. https://www.cnki.com.cn/Article/CJFDTOTAL-DZKQ201906031.htm

    Wang K Q, Xiao F. Multiple-points geostatistics: A review of theories methods and applications[J]. Geological Science and Technology Information, 2019, 38(6): 256-268 (in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-DZKQ201906031.htm
    [37] 刘乐, 杨智. 基于钻孔数据的三维地质建模空间插值方法的对比研究[J]. 能源技术与管理, 2019, 44(3): 162-164. doi: 10.3969/j.issn.1672-9943.2019.03.063

    Liu L, Yang Z. Comparative study on spatial interpolation methods of 3D geological modeling based on borehole data[J]. Energy Technology and Management, 2019, 44(3): 162-164 (in Chinese with English abstract). doi: 10.3969/j.issn.1672-9943.2019.03.063
    [38] 林成贵, 程志中, 吕志成, 等. 甘肃省早子沟金矿原生晕分带特征及深部找矿预测[J]. 吉林大学学报: 地球科学版, 2020, 50(1): 70-84. https://www.cnki.com.cn/Article/CJFDTOTAL-CCDZ202001006.htm

    Lin C G, Cheng Z Z, Lü Z C, et al. Characteristics of primary halo zonation and deep ore prediction in Zaozigou gold deposit, Gansu Province[J]. Journal of Jilin University: Earth Science Edition, 2020, 50(1): 70-84 (in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-CCDZ202001006.htm
  • 加载中
图(16) / 表(4)
计量
  • 文章访问数:  434
  • PDF下载量:  228
  • 被引次数: 0
出版历程
  • 收稿日期:  2020-11-26

目录

    /

    返回文章
    返回