Current situation and prospect of structure-attribute integrated 3D geological modeling technology for geological big data
-
摘要: 开展三维地质建模的目标,不应当只是实现地质体框架的可视化表达,而应当同时实现地质大数据的聚合、管理、挖掘、分析和共享。然而,传统的方法和技术难以实现顾及地质语义的结构-属性一体化三维地质建模与耦合表达。多点地质统计学方法虽然便于多源数据、地质先验知识、结构-属性的融合建模,却仍然受到数据结构表达能力不足、三维训练图像难以获取和非平稳现象的限制。面向地质大数据集成与管理的要求,详细讨论了三维地质建模中的空间数据模型、基于多点地质统计学的结构-属性一体化集成建模方法、以及基于三维地质模型的地质大数据集成与管理的框架与模式。发展新型的面向地质结构-属性耦合表达的统一空间数据模型,以及知识驱动与数据驱动协同的三维地质结构-属性一体化集成建模技术体系,着力构建出地质大数据的聚合、集成、管理、挖掘和分析的可视化环境与操作平台,是未来三维地质建模领域的研究热点和前沿方向。Abstract: The goal of three-dimensional (3D) geological modeling not only realizes the visual expression of geological objects, but also achieves the aggregation, management, mining, analysis and sharing of geological big data. However, traditional methods and techniques are difficult to achieve structural-attribute integrated 3D geological modeling and coupled expression that considers geological semantics. Although multiple-point geostatistical methods facilitate the fusion modeling of multiple-source data, geological prior knowledge, and structure-attribute, they are still limited by the insufficient expression ability of data models, the difficulty in obtaining the 3D training images, and the non-stationary phenomenon. For geological big data, this papaper discusses throughly the spatial data model, the multiple-point geostatistics-based structure-attribute integrated modeling method, and the framework of integration and management for geological big data with a unified 3D geological model. We believe that ① developing new unified spatial data models for geological structure-attribute coupling expression, ② exploring knowledge-driven and data-driven collaborative 3D geological structure-attribute integrated modeling technologies, ③ constructing a visual environment and operation platform for the aggregation, integration, management, mining and analysis of geological big data, will be the research hotspots and the frontier directions in the field of 3D geological modeling in the future.
-
表 1 三维地质建模中数据模型类别[22]
Table 1. Data models in 3D geological modeling
基于面元的实体模型 基于体元的实体模型 混合实体模型 规则体元 不规则体元 不规则三角网(TIN) 构造实体几何(CSG) 四面体格网(TEN) TIN-CSG混合 格网(grid) 体素(voxel) 金字塔(pyramid) TIN-octree混合 边界表示模型(B-Rep) 针体(needle) 三棱柱(TP) octree-TEN混合 线框模型(wire-frame) 八叉树(octree) 地质细胞 wire frame-block混合 断面(section) 规则块体(regular block) 不规则块体 B-rep-voxel混合 断面-三角网 实体(solid) 多层DEM 广义三棱柱(GTP) 角点网格(CPG) -
[1] 吴冲龙, 刘刚, 张夏林, 等.地质科学大数据及其利用的若干问题探讨[J].科学通报, 2016, 61(16):1797-1807. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=kxtb201616010 [2] 赵鹏大.地质大数据特点及其合理开发利用[J].地学前缘, 2019, 26(4):1-5. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=dxqy201904001 [3] 陈麒玉, 刘刚, 吴冲龙, 等.城市地质调查中知识驱动的多尺度三维地质体模型构建方法[J].地理与地理信息科学, 2016, 32(4):11-16. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=dlxygtyj201604003 [4] Caers J.Modeling uncertainty in the Earth sciences[M].Hoboken:John Wiley & Sons, 2011. [5] 李青元, 张洛宜, 曹代勇, 等.三维地质建模的用途、现状、问题、趋势与建议[J].地质与勘探, 2016, 52(4):759-767. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=dzykt201604018 [6] 陈国旭, 田宜平, 张夏林, 等.基于勘探剖面的三维地质模型快速构建及不确定性分析[J].地质科技情报, 2019, 38(2):275-280. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=dzkjqb201902033 [7] 张文彪, 段太忠, 刘彦锋, 等.定量地质建模技术应用现状与发展趋势[J].地质科技情报, 2019, 38(3):1-9. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=dzkjqb201903029 [8] 吴冲龙, 何珍文, 翁正平, 等.地质数据三维可视化的属性、分类和关键技术[J].地质通报, 2011, 30(5):642-649. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=zgqydz201105003 [9] Caumon G, Collon-Drouaillet P, de Veslud C L C, et al.Surface-based 3D modeling of geological structures[J].Mathematical Geosciences, 2009, 41(8):927-945. doi: 10.1007/s11004-009-9244-2 [10] 李章林, 吴冲龙, 张夏林, 等.带精细属性特征的矿体实体模型动态构建方法[J].中国矿业大学学报, 2011, 40(6):990-994. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=zgkydxxb201106028 [11] Islam M R, Hayashi D, Kamruzzaman A B M.Finite element modeling of stress distributions and problems for multi-slice longwall mining in Bangladesh, with special reference to the Barapukuria coal mine[J].International Journal of Coal Geology, 2009, 78(2):91-109. doi: 10.1016/j.coal.2008.10.006 [12] Mariethoz G, Caers J.Multiple-point geostatistics:Stochastic modeling with training images[M].Hoboben:John Wiley & Sons, 2014. [13] He Z, Wu C, Tian Y, et al.Three-dimensional reconstruction of geological solids based on section topology reasoning[J].Geo-spatial Information Science, 2008, 11(3):201-208. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=dqkjxxkxxb-e200803009 [14] Pellerin J, Lévy B, Caumon G, et al.Automatic surface remeshing of 3D structural models at specified resolution:A method based on Voronoi diagrams[J].Computers & Geosciences, 2014, 62:103-116. http://www.sciencedirect.com/science/article/pii/S0098300413002483 [15] 吴冲龙, 刘刚, 何珍文, 等.城市地质环境信息系统[M].北京:科学出版社, 2016. [16] Houlding S.3D geoscience modeling:Computer techniques for geological characterization[M].Berlin Heidelberg:Springer Science & Business Media, 1994. [17] Wellmann F, Caumon G.3-D structural geological models:Concepts, methods, and uncertainties[M].Cedric Schmel-Zlbach:Elsevier, 2018. [18] Hou W, Yang L, Deng D, et al.Assessing quality of urban underground spaces by coupling 3D geological models:The case study of Foshan City, South China[J].Computers & Geosciences, 2016, 89:1-11. http://www.sciencedirect.com/science/article/pii/S0098300415300248 [19] 潘懋, 方裕, 屈红刚.三维地质建模若干基本问题探讨[J].地理与地理信息科学, 2007, 23(3):1-5. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=dlxygtyj200703001 [20] 明镜.三维地质建模技术研究[J].地理与地理信息科学, 2011, 27(4):14-18. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=dlxygtyj201104003 [21] 程朋根.地矿三维空间数据模型及相关算法研究[D].武汉: 武汉大学, 2005. [22] 吴立新, 陈学习, 车德福, 等.一种基于GTP的地下真3D集成表达的实体模型[J].武汉大学学报:信息科学版, 2007, 32(4):331-335. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=whchkjdxxb200704014 [23] 陈麒玉, 刘刚, 李新川, 等.基于实时矢量剪切的三维地质体模型序贯剖面可视分析方法[J].岩土力学, 2017, 38(5):1365-1372. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=ytlx201705018 [24] 陈少强, 李琦, 苗前军, 等.矢量与栅格结合的三维地质模型编辑方法[J].计算机辅助设计与图形学学报, 2005, 17(7):1544-1548. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=jsjfzsjytxxxb200507027 [25] 毛先成, 赵莹, 唐艳华, 等.基于TIN的地质界面三维形态分析方法与应用[J].中南大学学报:自然科学版, 2013, 44(4):1493-1499. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=zngydxxb201304029 [26] 周良辰, 林冰仙, 闾国年.虚拟钻孔控制的地质剖面图构建算法与实现[J].地球信息科学学报, 2013, 15(3):356-361. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=dqxxkx201303005 [27] 袁峰, 李晓晖, 张明明, 等.隐伏矿体三维综合信息成矿预测方法[J].地质学报, 2014, 88(4):630-643. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=dizhixb201404015 [28] 李楠, 肖克炎, 丁建华, 等.大比例尺成矿预测中高精度立方格预测模型快速构建算法[J].吉林大学学报:地球科学版, 2013, 43(4):1301-1308. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=cckjdxxb201304027 [29] Courrioux G, Nullans S, Guillen A, et al.3D volumetric modelling of Cadomian terranes (Northern Brittany, France):An automatic method using Voronoi diagrams[J].Tectonophysics, 2001, 331(1/2):181-196. http://www.sciencedirect.com/science/article/pii/S0040195100002420 [30] Ponting D K.Corner point geometry in reservoir simulation[C]//Anon.ECMOR I-1st European conference on the mathematics of oil recovery.Cambridge: European Association of Geoscientist Engineers, 1989: 41-45. [31] Aarnes J E, Krogstad S, Lie K.Multiscale mixed/mimetic methods on corner-point grids[J].Computational Geosciences, 2008, 12(3):297-315. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=4fc28de3bda17982c3c6d09847bce00f [32] 吴冲龙, 毛小平, 田宜平, 等.三维数字盆地构造-地层格架模拟技术[J].地质科技情报, 2006, 24(4):1-8. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=dzkjqb200604001 [33] 毛小平, 张志庭, 钱真.用角点网格模型表达地质模型的剖析及在油气成藏过程模拟中的应用[J].地质学刊, 2012, 36(3):265-273. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=jsdz201203007 [34] 唐丙寅, 吴冲龙, 李新川.一种基于TIN-CPG混合空间数据模型的精细三维地质模型构建方法[J].岩土力学, 2017, 38(4):1218-1225. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=ytlx201704037 [35] 武强, 徐华.三维地质建模与可视化方法研究[J].中国科学:地球科学, 2004, 34(1):54-60. http://d.wanfangdata.com.cn/Periodical/zgkx-cd200401006 [36] 贺怀建, 白世伟, 赵新华, 等.三维地层模型中地层划分的探讨[J].岩土力学, 2002, 23(5):637-639. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=ytlx200205024 [37] 何珍文.地质空间三维动态建模关键技术研究[D].武汉: 华中科技大学, 2008. [38] 翁正平.复杂地质体三维模型快速构建及更新技术研究[D].武汉: 中国地质大学(武汉), 2013. [39] 朱良峰, 李明江, 孙建中.工程地质空间多场耦合构模技术研究[J].岩土力学, 2012, 33(8):2500-2506. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=ytlx201208038 [40] Chen Q, Liu G, Li X, et al.A corner-point-grid-based voxelization method for the complex geological structure model withfolds[J].Journal of Visualization, 2017, 20(4):875-888. doi: 10.1007/s12650-017-0433-7 [41] 陈麒玉.基于多点地质统计学的三维地质体随机建模方法研究[D].武汉: 中国地质大学(武汉), 2018. [42] Guardiano F B, Srivastava R M.Multivariate geostatistics: Beyond bivariatemoments[C]//Anon.Geostatistics Troia'92, Dordrecht: Springer, 1993. [43] Chen Q, Liu G, Ma X, et al.Conditional multiple-point geostatistical simulation for unevenly distributed sample data[J].Stochastic Environmental Research and Risk Assessment, 2019, 33:973-987. doi: 10.1007/s00477-019-01671-5 [44] Mariethoz G, Straubhaar J, Renard P, et al.Constraining distance-based multipoint simulations to proportions and trends[J].Environmental Modelling & Software, 2015, 72:184-197. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=0318247974901f1df420fcbf722167a4 [45] Allard D, Comunian A, Renard P.Probability aggregation methods in geoscience[J].Mathematical Geosciences, 2012, 44(5):545-581. doi: 10.1007/s11004-012-9396-3 [46] Tahmasebi P, Javadpour F, Frébourg G.Geologic modeling of eagle ford facies continuity based on outcrop images and depositional processes[J].SPE Journal, 2018, 23(4):1359-1371. doi: 10.2118/189975-PA [47] Hansen T M, Vu L T, Mosegaard K, et al.Multiple point statistical simulation using uncertain (soft)conditional data[J].Computers & Geosciences, 2018, 114:1-10. http://www.ingentaconnect.com/content/el/00983004/2018/00000114/00000001/art00001 [48] Zhang T, Switzer P, Journel A.Filter-based classification of training image patterns for spatial simulation[J].Mathematical Geology, 2006, 38(1):63-80. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=e40d4a1a9ed4b7489a5d8b85ff5f4412 [49] Tahmasebi P, Sahimi M.Geostatistical simulation and reconstruction of porous media by a cross-correlation function and integration of hard and soft data[J].Transport in Porous Media, 2015, 107(3):871-905. doi: 10.1007/s11242-015-0471-3 [50] Zhang T, Du Y, Huang T, et al.Reconstruction of spatial data using isometric mapping and multiple-point statistics[J].Computational Geosciences, 2015, 19(5):1047-1062. doi: 10.1007/s10596-015-9519-2 [51] 王鸣川, 段太忠.基于图型矢量距离的多点地质统计相建模算法[J].石油学报, 2018, 39(8):916-923. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=syxb201808007 [52] 张挺.基于多点地质统计学的多孔介质重构方法及实现[D].合肥: 中国科学技术大学, 2009. [53] Manuel De Vries L, Carrera J, Falivene O, et al.Application of multiple point geostatistics to non-stationary images[J].Mathematical Geosciences, 2009, 41(1):29-42. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=c57386a3e9dae32ef3662bdecc7f8e11 [54] Mariethoz G, Renard P.Reconstruction of incomplete data sets or images using direct sampling[J].Mathematical Geosciences, 2010, 42(3):245-268. doi: 10.1007/s11004-010-9270-0 [55] 尹艳树, 吴胜和, 张昌民, 等.基于储层骨架的多点地质统计学方法[J].中国科学:地球科学, 2008, 38(增刊2):157-164. http://www.cqvip.com/QK/98491X/2008s2/1000583838.html [56] Comunian A, Renard P, Straubhaar J.3D multiple-point statistics simulation using 2D training images[J].Computers & Geosciences, 2012, 40:49-65. http://www.sciencedirect.com/science/article/pii/S009830041100238X [57] Yin Y, Feng W.A location-based multiple point statistics method:Modelling the reservoir with non-stationary characteristics[J].Open Geosciences, 2017, 9(1):635-649. doi: 10.1515/geo-2017-0048 [58] 尹艳树, 张昌民, 李玖勇, 等.多点地质统计学研究进展与展望[J].古地理学报, 2011, 13(2):245-252. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=gdlxb201102013 [59] 石书缘, 尹艳树, 和景阳, 等.基于随机游走过程的多点地质统计学建模方法[J].地质科技情报, 2011, 30(5):127-131. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=dzkjqb201105022 [60] Chen Q, Mariethoz G, Liu G, et al.Locality-based 3-D multiple-point statistics reconstruction using 2-D geological cross-sections[J].Hydrology and Earth System Sciences, 2018, 22:6547-6566. doi: 10.5194/hess-22-6547-2018 [61] Chen Q, Liu G, Ma X, et al.3D stochastic modeling framework for Quaternary sediments using multiple-point statistics:A case study in Minjiang Estuary area, Southeast China[J].Computers & Geosciences, 2020, 136:104404. doi: 10.1016/j.cageo.2019.104404 [62] 刘志锋.基于系统动力学的三维油气成藏模拟研究及应用[D].武汉: 中国地质大学(武汉), 2011. [63] 翟明国, 杨树锋, 陈宁华, 等.大数据时代:地质学的挑战与机遇[J].中国科学院院刊, 2018, 33(8):825-831. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=zgkxyyk201808012 [64] 吴冲龙, 翁正平, 刘刚, 等.论中国"玻璃国土"建设[J].地质科技情报, 2012, 31(6):1-8. http://www.cqvip.com/QK/93477A/20126/44012100.html [65] 吴冲龙, 刘刚, 王力哲, 等.基于大数据的城市地质环境智能监管思路与方法[J].地质科技通报, 2020, 39(1):157-163. http://dzkjqb.cug.edu.cn/CN/abstract/abstract9936.shtml [66] 马凯.地质大数据表示与关联关键技术研究[D].武汉: 中国地质大学(武汉), 2018. [67] 潘婷婷, 陈建平, 吴永亮, 等.多源异构地质数据集成方法应用研究[J].地质学刊, 2018, 42(1):122-126. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=jsdz201801016 [68] Chen Q, Liu G, Ma X, et al.A virtual globe-based integration and visualization framework for aboveground and underground 3D spatial objects[J].Earth Science Informatics, 2018, 11(4):591-603. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=fea4b42779fc7e4181ebc8a8ed7ec836 [69] 吴冲龙, 刘刚.大数据与地质学的未来发展[J].地质通报, 2019, 38(7):1081-1088. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=zgqydz201907001 [70] 谭永杰.地质大数据体系建设的总体框架研究[J].中国地质调查, 2016, 3(3):1-6. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=zgdzdc201603001 [71] 周永章, 王俊, 左仁广, 等.地质领域机器学习、深度学习及实现语言[J].岩石学报, 2018, 34(11):3173-3178. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=ysxb98201811002 [72] 刘刚, 吴冲龙, 何珍文, 等.面向地质时空大数据表达与存储管理的数据模型研究[J].地质科技通报, 2020, 39(1):164-174. http://dzkjqb.cug.edu.cn/CN/abstract/abstract9937.shtml