留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

青藏高原挠曲均衡重力异常特征及其地质意义

张星宇 杜劲松 陈超 梁青

张星宇, 杜劲松, 陈超, 梁青. 青藏高原挠曲均衡重力异常特征及其地质意义[J]. 地质科技通报, 2023, 42(2): 223-233. doi: 10.19509/j.cnki.dzkq.tb20220621
引用本文: 张星宇, 杜劲松, 陈超, 梁青. 青藏高原挠曲均衡重力异常特征及其地质意义[J]. 地质科技通报, 2023, 42(2): 223-233. doi: 10.19509/j.cnki.dzkq.tb20220621
Zhang Xingyu, Du Jinsong, Chen Chao, Liang Qing. Characteristics of flexural isostatic gravity anomalies in the Tibetan Plateau and its geological significances[J]. Bulletin of Geological Science and Technology, 2023, 42(2): 223-233. doi: 10.19509/j.cnki.dzkq.tb20220621
Citation: Zhang Xingyu, Du Jinsong, Chen Chao, Liang Qing. Characteristics of flexural isostatic gravity anomalies in the Tibetan Plateau and its geological significances[J]. Bulletin of Geological Science and Technology, 2023, 42(2): 223-233. doi: 10.19509/j.cnki.dzkq.tb20220621

青藏高原挠曲均衡重力异常特征及其地质意义

doi: 10.19509/j.cnki.dzkq.tb20220621
基金项目: 

国家自然科学基金项目 41774091

国家自然科学基金项目 42174090

地质过程与矿产资源国家重点实验室科技部专项 MSFGPMR2022-4

详细信息
    作者简介:

    张星宇(1995—),男,现正攻读地球探测与信息技术专业博士学位,主要从事卫星重力与岩石圈动力学方面的研究工作。E-mail: xingyuzhang@cug.edu.cn

    通讯作者:

    陈超(1960—),男,教授,博士生导师,主要从事区域地球物理学方面的教学与科研工作。E-mail: chenchao@cug.edu.cn

  • 中图分类号: P631.1

Characteristics of flexural isostatic gravity anomalies in the Tibetan Plateau and its geological significances

  • 摘要:

    自新生代印度板块的块持续碰撞与俯冲作用下,青藏高原经历了快速隆升与复杂的岩石圈改造过程,但高原现今的垂向动力学机制和地壳形变特征仍然存在争议。基于非均一有效弹性厚度的挠曲模型,利用地形和地球重力场模型数据,计算了青藏高原及邻区的挠曲均衡重力异常。结果显示,青藏高原的均衡重力异常在-120~90 mGal之间,高原中部为明显的正异常特征,边缘为显著的均衡负异常。极小值出现在青藏高原西北部及其相邻的帕米尔高原,极大值则出现在与之紧邻的喜马拉雅块体西北部。此外,在青藏高原北面和东面,塔里木盆地和四川盆地显示出大片的均衡正异常。这些特征说明青藏高原及邻区地壳现今处于非均衡的状态,在板块碰撞挤压作用下,老的块体地壳整体发生抬升,导致了均衡正异常特征;而年轻的造山区域,地壳形变主要表现为地表抬升与下地壳强烈增厚,形成了均衡负异常。在高原中部和北部,均衡调整方向与地壳垂向运动趋势相一致;但在高原南面(喜马拉雅块体)和东面(四川盆地),均衡调整方向与地表形变观测结果相反。这说明印度板块碰撞与俯冲仍然控制着青藏高原南部、东部及其相邻块体的地壳形变过程,然而在更北的区域,地壳正通过均衡调整恢复均衡状态。

     

  • 图 1  青藏高原地形与构造示意图

    底图DEM数据源自ETOPO1(据文献[33]),黑色虚线表示主要的构造边界(据文献[34])

    Figure 1.  Topography map and sketch of tectonic units in the Tibetan Plateau

    图 2  青藏高原重力异常及地形重力效应

    a. 自由空间重力异常;b. 地形重力效应;c. 布格重力异常

    Figure 2.  Distribution of the gravity anomalies and terrain gravity effects over the Tibetan Plateau

    图 3  青藏高原及邻区的有效弹性厚度分布

    Figure 3.  Variations in the effective elastic thicknessover the Tibetan Plateau

    图 4  均衡补偿深度与其他莫霍面数据的对比

    Figure 4.  Comparison of isostatic compensation depth with other Moho models

    图 5  均衡补偿深度(a)、Zhao等[11]的莫霍面深度(b)、Stolk等[52]的莫霍面深度(c)和Crust1.0[53]莫霍面深度(d)

    Figure 5.  Isostatic compensation depth(a), Moho depth for the results of Zhao et al.[11](b), Stolk et al.[52](c) and CRUST1.0[53](d)

    图 6  均衡改正

    Figure 6.  Isostatic correction

    图 7  青藏高原挠曲均衡重力异常

    箭头表示地壳垂向速度场,蓝色箭头表示抬升,红色箭头表示下沉;○指示的数据源自文献[14], □指示的数据源自文献[15]

    Figure 7.  Flexural isostatic gravity anomalies around the Tibetan Plateau

    图 8  有效弹性厚度(图 3)-10, -5, +5, +10 km时,计算得到的挠曲均衡重力异常(a~d)以及它们与图 7之间的差异(e~h)

    Figure 8.  Show the calculated flexural isostatic gravity anomalies for effective elastic thicknesses (Fig. 3) of -10, -5, +5, +10 km, respectively(a-d), show the differences between them and Fig. 7, respectively(e-h)

    表  1  本研究计算过程中需要的所有参数

    Table  1.   Values of constants and parameters assumed in calculations

    参数 符号 数值
    万有引力常数/(m3·kg-1·s-2) G 6.672 59×10-11
    杨氏模量/GPa E 100
    泊松比 υ 0.25
    平均地幔密度/(kg·m-3) ρm 3 270
    平均地壳密度/(kg·m-3) ρc 2 670
    空气或海水密度/(kg·m-3) ρf 0, 1 030
    重力加速度/(m·s-2) g 9.81
    下载: 导出CSV
  • [1] Leech M L, Singh S, Jain A, et al. The onset of India-Asia continental collision: Early, steep subduction required by the timing of UHP metamorphism in the western Himalaya[J]. Earth and Planetary Science Letters, 2005, 234: 83-97. doi: 10.1016/j.epsl.2005.02.038
    [2] Willett S D, Beaumont C. Subduction of Asian lithospheric mantle beneath Tibet inferred from models of continental collision[J]. Nature, 1994, 369: 642-645. doi: 10.1038/369642a0
    [3] Yin A, Harrison T M. Geologic evolution of the Himalayan-Tibetan orogen[J]. Annual Review of Earth and Planetary Sciences, 2000, 28(1): 211-280. doi: 10.1146/annurev.earth.28.1.211
    [4] Gao R, Lu Z W, Klemperer S L, et al. Crustal-scale duplexing beneath the Yarlung Zangbo suture in the western Himalaya[J]. Nature Geoscience, 2016, 9: 555-560. doi: 10.1038/ngeo2730
    [5] 赵帅, 解习农, 刘中戎, 等. 古地貌对断陷盆地沉积体系的控制作用: 以青藏高原伦坡拉盆地始新统牛堡组为例[J]. 地质科技通报, 2019, 38(2): 53-64. https://dzkjqb.cug.edu.cn/article/id/9761

    Zhao S, Xie X N, Liu Z R, et al. Control of tectonic-paleogeomorphology on deposition system of faulting-subsiding basin: A case from the Eocene Niubao Formation in Lunpola Basin, Central Tibet[J]. Bulletin of Geological Science and Technology, 2019, 38(2): 53-64(in Chinese with English abstract). https://dzkjqb.cug.edu.cn/article/id/9761
    [6] 李秋生, 高原, 王旭本, 等. 青藏高原地球物理与大陆动力学研究的新进展[J]. 地球物理学报, 2020, 63(3): 789-801. https://www.cnki.com.cn/Article/CJFDTOTAL-DQWX202003002.htm

    Li Q S, Gao Y, Wang X B, et al. New research progress in geophysics and continental dynamics of the Tibetan Plateau[J]. Chinese Journal of Geophysics, 2020, 63(3): 789-801(in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-DQWX202003002.htm
    [7] Shin Y H, Shum C K, Braitenberg C, et al. Moho topography, ranges and folds of Tibet by analysis of global gravity models and GOCE data[J]. Scientific Reports, 2015, 5: 11681. doi: 10.1038/srep11681
    [8] Xu C, Liu Z W, Luo Z C, et al. Moho topography of the Tibetan Plateau using multi-scale gravity analysis and its tectonic implications[J]. Journal of Asian Earth Sciences, 2017, 138: 378-386. doi: 10.1016/j.jseaes.2017.02.028
    [9] Chen W, Tenzer R. Moho modeling in spatial domain: A case study under Tibet[J]. Advances in Space Research, 2017, 59(12): 2855-2869. doi: 10.1016/j.asr.2017.03.015
    [10] Baranov A, Bagherbandi M, Tenzer R. Combined gravimetric-seismic Moho model of Tibet[J]. Geosciences, 2018, 8(12): 461. doi: 10.3390/geosciences8120461
    [11] Zhao G, Liu J, Chen B, et al. Moho beneath Tibet based on a joint analysis of gravity and seismic data[J]. Geochemistry, Geophysics, Geosystems, 2020, 21: e2019GC008849.
    [12] Wang Q, Zhang P Z, Freymueller J, et al. Present day crustal deformation in China constrained by global positioning system (GPS) measurements[J]. Science, 2001, 294: 574-577. doi: 10.1126/science.1063647
    [13] 王伟, 王迪晋, 陈正松, 等. 用GPS资料分析青藏高原现今应变率场[J]. 大地测量与地球动力学, 2017, 37(9): 881-883. doi: 10.14075/j.jgg.2017.09.001

    Wang W, Wang D J, Chen Z S, et al. Present-day strain rate field of Tibetan Plateau analyzed by GPS measurements[J]. Journal of Geodesy and Geodynamics, 2017, 37(9): 881-883(in Chinese with English abstract). doi: 10.14075/j.jgg.2017.09.001
    [14] Pan Y J, Shen W B, Shum C K, et al. Spatially varying surface seasonal oscillations and 3-D crustal deformation of the Tibetan Plateau derived from GPS and GRACE data[J]. Earth and Planetary Science Letters, 2018, 502: 12-22. doi: 10.1016/j.epsl.2018.08.037
    [15] Pan Y J, Hammond W C, Ding H, et al. GPS imaging of vertical bedrock displacements: Quantification of two-dimensional vertical crustal deformation in China[J]. Journal of Geophysical Research, 2021, 126: e2020JB020951.
    [16] 陈石, 王谦身. 蒙古及周边地区重力异常和地壳不均匀体分布[J]. 地球物理学报, 2015, 58(1): 79-91. https://www.cnki.com.cn/Article/CJFDTOTAL-DQWX201501007.htm

    Chen S, Wang Q S. Gravity anomalies and the distributions of inhomogeneous masses in the crust of Mongolia and its surrounding regions[J]. Chinese Journal of Geophysics, 2015, 58(1): 79-91(in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-DQWX201501007.htm
    [17] 吴开彬, 曾广乾, 陈国雄, 等. 布格重力异常揭示的贵州深部构造特征[J]. 地质科技通报, 2016, 35(1): 190-199. https://dzkjqb.cug.edu.cn/article/id/9101

    Wu K B, Zeng G Q, Chen G X, et al. Deep structural features of Guizhou revealed by Bouguer gravity anomaly[J]. Bulletin of Geological Science and Technology, 2016, 35(1): 190-199(in Chinese with English abstract). https://dzkjqb.cug.edu.cn/article/id/9101
    [18] 杨文采, 瞿辰, 侯遵泽, 等. 中国大陆克拉通地体地壳密度结构特征[J]. 地质论评, 2017, 63(4): 843-853. doi: 10.16509/j.georeview.2017.04.001

    Yang W C, Qu C, Hou Z Z, et al. Crustal density structures of craton terrains in continent of China[J]. Geological Review, 2017, 63(4): 843-853(in Chinese with English abstract). doi: 10.16509/j.georeview.2017.04.001
    [19] 单斌, 周万里. 岩石圈结构成像方法的进展与展望[J]. 地质科技通报, 2022, 41(5): 112-121. doi: 10.19509/j.cnki.dzkq.2022.0241

    Shan B, Zhou W L. Methods and prospects for lithospheric structure imaging[J]. Bulletin of Geological Science and Technology, 2022, 41(5): 112-121(in Chinese with English abstract). doi: 10.19509/j.cnki.dzkq.2022.0241
    [20] Kaban M K, Khrepy S E, Al-Arifi N. Isostatic model and isostatic gravity anomalies of the Arabian Plate and surroundings[J]. Pure & Applied Geophysics, 2016, 173(4): 1211-1221.
    [21] Kaban M K, Schwintzer P, Tikhotsky S A. A global isostatic gravity model of the Earth[J]. Geophysical Journal International, 1999, 136(3): 519-536. doi: 10.1046/j.1365-246x.1999.00731.x
    [22] 陈石, 王谦身, 祝意青, 等. 青藏高原东缘重力导纳模型均衡异常时空特征[J]. 地球物理学报, 2011, 54(1): 22-34. doi: 10.3969/j.issn.0001-5733.2011.01.004

    Chen S, Wang Q S, Zhu Y Q, et al. Temporal and spatial features of isostasy anomaly using gravitational admittance model at eastern margin of Tibetan Plateau[J]. Chinese Journal of Geophysics, 2011, 54(1): 22-34(in Chinese with English abstract). doi: 10.3969/j.issn.0001-5733.2011.01.004
    [23] 张星宇, 陈超, 杜劲松, 等. 天山及邻区Vening Meinesz均衡重力异常特征及其动力学意义[J]. 地球物理学报, 2020, 63(10): 3791-3803. doi: 10.6038/cjg2020N0448

    Zhang X Y, Chen C, Du J S, et al. Characteristics of Vening Meinesz isostatic gravity anomalies in Tien Shan and surroundings and its dynamic significances[J]. Chinese Journal of Geophysics, 2020, 63(10): 3791-3803(in Chinese with English abstract). doi: 10.6038/cjg2020N0448
    [24] Kirby J F. On the pitfalls of Airy isostasy and the isostatic gravity anomaly in general[J]. Geophysical Journal International, 2019, 216: 103-122.
    [25] Simpson R W, Jachens R C, Blakely R J, et al. A new isostatic residual gravity map of the conterminous United States with a discussion on the significance of isostatic residual anomalies[J]. Journal of Geophysical Research, 1986, 91(B8): 8348-8372. doi: 10.1029/JB091iB08p08348
    [26] Ussami N, de Sá N C, Molina E C. Gravity map of Brazil: 2. Regional and residual isostatic anomalies and their correlation with major tectonic provinces[J]. Journal of Geophysical Research, 1993, 98(B2): 2199-2208.
    [27] Watts A B, Moore J D P. Flexural isostasy: Constraints from gravity and topography power spectra[J]. Journal of Geophysical Research, 2017, 122: 8417-8430. doi: 10.1002/2017JB014571
    [28] Audet P, Bürgmann R. Dominant role of tectonic inheritance in supercontinent cycles[J]. Nature Geoscience, 2011, 4: 184-187. doi: 10.1038/ngeo1080
    [29] Tesauro M, Audet P, Kaban M K, et al. The effective elastic thickness of the continental lithosphere: Comparison between rheological and inverse approaches[J]. Geochemistry Geophysics Geosystems, 2012, 13: Q09001.
    [30] Kaban M K, Delvaux D, Maddaloni F, et al. Thickness of sediments in the Congo Basin based on the analysis of decompensative gravity anomalies[J]. Journal of African Earth Sciences, 2021, 179: 104201. doi: 10.1016/j.jafrearsci.2021.104201
    [31] Kaban M K, Gvishiani A, Sidorov R, et al. Structure and density of sedimentary basins in the southern part of the East-European Platform and surrounding area[J]. Applied Sciences, 2021, 11(2): 512. doi: 10.3390/app11020512
    [32] 许志琴, 杨经绥, 李海兵, 等. 造山的高原: 青藏高原的地体拼合、碰撞造山及隆升机制[M]. 北京: 地质出版社, 2007.

    Xu Z Q, Yang J S, Li H B, et al. Orogenic plateau: Terrane ammalgatation, collisional orogeny and uplifting of the Qinghai-Tibet Plateau[M]. Beijing: Geological Publishing House, 2007(in Chinese with English abstract).
    [33] Amante C, Eakins B W. ETOPO1 1 arc-minute global relief model: Procedures, data sources and analysis[C]//Anon. NOAA Technical Memorandum NESDIS NGDC-24, National Geophysical Data Center, NOAA. [S. l.]: [s. n.], 2009: 1-9.
    [34] Pandey S, Yuan X, Debayle E, et al. A 3D shear-wave velocity model of the upper mantle beneath China and the surrounding areas[J]. Tectonophysics, 2014, 633: 193-210. doi: 10.1016/j.tecto.2014.07.011
    [35] 李廷栋. 青藏高原隆升的过程和机制[J]. 地球学报, 1995, 34(1): 1-9. https://www.cnki.com.cn/Article/CJFDTOTAL-DQXB501.000.htm

    Li T D. The uplifting process and mechanism of the Qinghai-Tibet Plateau[J]. Acta Geoscientia Sinica, 1995, 34(1): 1-9(in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-DQXB501.000.htm
    [36] Tapponnier P, Xu Z Q, Roger F, et al. Oblique stepwise rise and growth of the Tibet Plateau[J]. Science, 2001, 294: 1671-1677. doi: 10.1126/science.105978
    [37] Royden L H, Burchfiel B C, van der Hilst R D. The geological evolution of the Tibetan Plateau[J]. Science, 2008, 321: 1054-1058. doi: 10.1126/science.1155371
    [38] Airy G B. On the computations of the effect of the attraction of the mountain-masses, as disturbing the apparent astronomical latitude of stations in geodetic surveys[J]. Philosophical Transactions of the Royal Society of London, 1855, 145: 101-104. doi: 10.1098/rstl.1855.0003
    [39] Pratt J H. On the attraction of the Himalaya Mountains, and of the elevated regions beyond them, upon the plumb-line in India[J]. Philosophical Transactions of the Royal Society of London, 1855, 145: 53-100. doi: 10.1098/rstl.1855.0002
    [40] Vening Meinesz F A. Une nouvelle méthode pour la réduction isostatique régionale de l'intensité de la pesanteur[J]. Bulletin Géodésique, 1931, 29: 33-51. doi: 10.1007/BF03030038
    [41] Stark C P, Stewart J, Ebinger C J. Wavelet transform mapping of effective elastic thickness and plate loading: Validation using synthetic data and application to the study of southern African tectonics[J]. Journal of Geophysical Research, 2003, 108 (B12): 2558. doi: 10.1029/2001JB000609
    [42] Kirby J F, Swain C J. An accuracy assessment of the fan wavelet coherence method for elastic thickness estimation[J]. Geochemistry, Geophysics, Geosystems, 2008, 9(3): Q03022.
    [43] Sjöberg L E. Solving Vening Meinesz-Moritz inverse problem in isostasy[J]. Geophysical Journal International, 2009, 179(3): 1527-1536. doi: 10.1111/j.1365-246X.2009.04397.x
    [44] Förste C, Bruinsma S L, Abrikosov O, et al. EIGEN-6C4 The latest combined global gravity field model including GOCE data up to degree and order 2190 of GFZ Potsdam and GRGS Toulouse[C]//Anon. EGU General Assembly Conference Abstracts. [S. l.]: [s. n.], 2014: 3707.
    [45] Parker R L. The rapid calculation of potential anomalies[J]. Geophysical Journal International, 1973, 31(4): 447-455. doi: 10.1111/j.1365-246X.1973.tb06513.x
    [46] Kirby J F, Swain C J. A reassessment of spectral Te estimation in continental interiors: The case of North America[J]. Journal of Geophysical Research, 2009, 114(B8): B08401.
    [47] Kirby J F, Swain C J. Improving the spatial resolution of effective elastic thickness estimation with the fan wavelet transform[J]. Computers & Geosciences, 2011, 37(9): 1345-1354.
    [48] Chen B, Chen C, Kaban M K, et al. Variations of the effective elastic thickness over China and surroundings and their relation to the lithosphere dynamics[J]. Earth and Planetary Science Letters, 2013, 363: 61-72. doi: 10.1016/j.epsl.2012.12.022
    [49] Jordan T A, Watts A B. Gravity anomalies, flexure and the elastic thickness structure of the India-Eurasia collisional system[J] Earth and Planetary Science Letters, 2005, 236(3/4): 732-750.
    [50] Wienecke S, Braitenberg C, Götze H J. A new analytical solution estimating the flexural rigidity in the Central Andes[J]. Geophysical Journal International, 2007, 169(3): 789-794. doi: 10.1111/j.1365-246X.2007.03396.x
    [51] Li Y, Yang Y. Isostatic state and crustal structure of North China Craton derived from GOCE gravity data[J]. Tectonophysics, 2020, 786: 228475.
    [52] Stolk W, Kaban M, Beekman F, et al. High resolution regional crustal models from irregularly distributed data: Application to Asia and adjacent areas[J]. Tectonophysics, 2013, 602: 55-68.
    [53] Laske G, Masters G, Ma Z T, et al. Update on CRUST1.0-a 1-degree global model of earth's crust[C]//Anon. EGU General Assembly Conference Abstracts. Vienna, Austria: [s. n.], 2013: 2658.
    [54] Watts A B. Isostasy and flexure of the lithosphere[M]. Cambridge: Cambridge University Press, 2001.
    [55] Ge W P, Molnar P, Shen Z K, et al. Present-day crustal thinning in the and northern Tibetan Plateau revealed by GPS measurements[J]. Geophysical Research Letters, 2015, 42: 5227-5235.
    [56] Molnar P, Tapponnier P. Active tectonics of Tibet[J]. Journal of Geophysical Research, 1978, 83: 5361-5375.
    [57] Bao X W, Song X D, Li J T. High-resolution lithospheric structure beneath Mainland China from ambient noise and earthquake surface-wave tomography[J]. Earth and Planetary Science Letters, 2015, 417: 132-141.
    [58] Xin H L, Zhang H J, Kang M, et al. High-resolution lithospheric velocity structure of continental China by double-difference seismic travel-time tomography[J]. Seismological Research Letters, 2018, 90(1): 229-241.
    [59] Rui X, Stamps D S. A geodetic strain rate and tectonic velocity model for China[J]. Geochemistry, Geophysics, Geosystems, 2019, 20: 1280-1297.
    [60] Wang C S, Zhao X X, Liu Z F, et al. Constraints on the early uplift history of the Tibetan Plateau[J]. Proceedings of the National Academy of Sciences of the United States of America, 2008, 105(13): 4987-4992.
    [61] Bao X W, Song X D, Eaton D W, et al. Episodic lithospheric deformation in eastern Tibet inferred from seismic anisotropy[J]. Geophysical Research Letters, 2020, 47: e2019GL085721.
    [62] Yuan X H, Ni J, Kind R, et al. Lithospheric and upper mantle structure of southern Tibet from a seismological passive source experiment[J]. Journal of Geophysical Research, 1997, 102: 27491-27500.
    [63] Kind R, Yuan X H, Saul J, et al. Seismic images of crust and upper mantle beneath Tibet: Evidence for Eurasian plate subduction[J]. Science, 2002, 298: 1219-1221.
    [64] Nabelek J, Hetenyi G, Vergne J, et al. Underplating in the Himalaya-Tibet collision zone revealed by the Hi-CLIMB experiment[J]. Science, 2009, 325: 1371-1374.
    [65] 赵俊猛, 张培震, 张先康, 等. 中国西部壳幔结构与动力学过程及其对资源环境的制约: "羚羊计划"研究进展[J]. 地学前缘, 2021, 28(5): 230-259. https://www.cnki.com.cn/Article/CJFDTOTAL-DXQY202105030.htm

    Zhao J M, Zhang P Z, Zhang X K, et al. Crust-mantle structure and geodymanics processes in western China and their constraints on resources and enviroment: Research progress of the ANTILOPE Project[J]. Earth Science Frontiers, 2021, 28(5): 230-259(in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-DXQY202105030.htm
    [66] Wittlinger G, Vergne J, Tapponnier P, et al. Teleseismic imaging of subducting lithosphere and Moho offsets beneath western Tibet[J]. Earth and Planetary Science Letters, 2004, 221(1/4): 117-130.
    [67] Zhao J M, Yuan X H, Liu H B, et al. The boundary between the Indian and Asian tectonic plates below Tibet[J]. Proceedings of the National Academy of Sciences of the United States of America, 2010, 107(25): 11229-11233.
    [68] Zhang Z J, Yuan X H, Yun C, et al. Seismic signature of the collision between the east Tibetan escape flow and the Sichuan Basin[J]. Earth and Planetary Science Letters, 2010, 292(3/4): 254-264.
  • 加载中
图(8) / 表(1)
计量
  • 文章访问数:  771
  • PDF下载量:  71
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-11-04

目录

    /

    返回文章
    返回