Characteristics of flexural isostatic gravity anomalies in the Tibetan Plateau and its geological significances
-
摘要:
自新生代印度板块的块持续碰撞与俯冲作用下,青藏高原经历了快速隆升与复杂的岩石圈改造过程,但高原现今的垂向动力学机制和地壳形变特征仍然存在争议。基于非均一有效弹性厚度的挠曲模型,利用地形和地球重力场模型数据,计算了青藏高原及邻区的挠曲均衡重力异常。结果显示,青藏高原的均衡重力异常在-120~90 mGal之间,高原中部为明显的正异常特征,边缘为显著的均衡负异常。极小值出现在青藏高原西北部及其相邻的帕米尔高原,极大值则出现在与之紧邻的喜马拉雅块体西北部。此外,在青藏高原北面和东面,塔里木盆地和四川盆地显示出大片的均衡正异常。这些特征说明青藏高原及邻区地壳现今处于非均衡的状态,在板块碰撞挤压作用下,老的块体地壳整体发生抬升,导致了均衡正异常特征;而年轻的造山区域,地壳形变主要表现为地表抬升与下地壳强烈增厚,形成了均衡负异常。在高原中部和北部,均衡调整方向与地壳垂向运动趋势相一致;但在高原南面(喜马拉雅块体)和东面(四川盆地),均衡调整方向与地表形变观测结果相反。这说明印度板块碰撞与俯冲仍然控制着青藏高原南部、东部及其相邻块体的地壳形变过程,然而在更北的区域,地壳正通过均衡调整恢复均衡状态。
Abstract:The Tibetan Plateau underwent rapid uplift and complex lithospheric modification during the Cenozoic under the continuing collision and subduction of the Indian Plate, but the present-day vertical dynamic motion and crustal deformation of the plateau remain controversial. This paper calculates the flexural isostatic gravity anomalies on the Tibetan Plateau and its neighboring blocks based on the flexural model with variable effective elastic thickness and using topographic data and Earth's gravity field model. The results show that the isostatic gravity anomalies on the Tibetan Plateau range from -120 to 90 mGal, with the central part characterized by distinct positive anomalies and the margins by significant negative anomalies. Minimal values occur in the northwest Tibetan Plateau and its adjacent Pamir Plateau, while maximal values occur in the northwest part of the Himalaya block. In addition, to the north and east of the Tibetan Plateau, the Tarim Basin and Sichuan Basin show large areas of positive isostatic anomalies. These features suggest that the crust of the Tibetan Plateau and its surroundings is now in a nonisostatic state, with the overall uplift of the older block under the effect of plate collision and compression, leading to positive isostatic anomalies. In younger orogenic regions, crustal deformation is primarily characterized by surface uplift and strong thickening of the lower crust, resulting in negative isostatic anomalies. In the central and northern parts of the plateau, the direction of isostatic adjustment is consistent with the trend of crustal vertical motion. However, south and east of the plateau (e.g., the Himalaya block and Sichuan Basin), the direction of isostatic adjustment is opposite to that observed for surface deformation. This suggests that the Indian Plate collision and subduction still control the crustal deformation processes in the southern and eastern parts of the Tibetan Plateau and its neighboring blocks. However, further north, the crust regains an isostatic state through isostatic adjustment.
-
表 1 本研究计算过程中需要的所有参数
Table 1. Values of constants and parameters assumed in calculations
参数 符号 数值 万有引力常数/(m3·kg-1·s-2) G 6.672 59×10-11 杨氏模量/GPa E 100 泊松比 υ 0.25 平均地幔密度/(kg·m-3) ρm 3 270 平均地壳密度/(kg·m-3) ρc 2 670 空气或海水密度/(kg·m-3) ρf 0, 1 030 重力加速度/(m·s-2) g 9.81 -
[1] Leech M L, Singh S, Jain A, et al. The onset of India-Asia continental collision: Early, steep subduction required by the timing of UHP metamorphism in the western Himalaya[J]. Earth and Planetary Science Letters, 2005, 234: 83-97. doi: 10.1016/j.epsl.2005.02.038 [2] Willett S D, Beaumont C. Subduction of Asian lithospheric mantle beneath Tibet inferred from models of continental collision[J]. Nature, 1994, 369: 642-645. doi: 10.1038/369642a0 [3] Yin A, Harrison T M. Geologic evolution of the Himalayan-Tibetan orogen[J]. Annual Review of Earth and Planetary Sciences, 2000, 28(1): 211-280. doi: 10.1146/annurev.earth.28.1.211 [4] Gao R, Lu Z W, Klemperer S L, et al. Crustal-scale duplexing beneath the Yarlung Zangbo suture in the western Himalaya[J]. Nature Geoscience, 2016, 9: 555-560. doi: 10.1038/ngeo2730 [5] 赵帅, 解习农, 刘中戎, 等. 古地貌对断陷盆地沉积体系的控制作用: 以青藏高原伦坡拉盆地始新统牛堡组为例[J]. 地质科技通报, 2019, 38(2): 53-64. https://dzkjqb.cug.edu.cn/article/id/9761Zhao S, Xie X N, Liu Z R, et al. Control of tectonic-paleogeomorphology on deposition system of faulting-subsiding basin: A case from the Eocene Niubao Formation in Lunpola Basin, Central Tibet[J]. Bulletin of Geological Science and Technology, 2019, 38(2): 53-64(in Chinese with English abstract). https://dzkjqb.cug.edu.cn/article/id/9761 [6] 李秋生, 高原, 王旭本, 等. 青藏高原地球物理与大陆动力学研究的新进展[J]. 地球物理学报, 2020, 63(3): 789-801. https://www.cnki.com.cn/Article/CJFDTOTAL-DQWX202003002.htmLi Q S, Gao Y, Wang X B, et al. New research progress in geophysics and continental dynamics of the Tibetan Plateau[J]. Chinese Journal of Geophysics, 2020, 63(3): 789-801(in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-DQWX202003002.htm [7] Shin Y H, Shum C K, Braitenberg C, et al. Moho topography, ranges and folds of Tibet by analysis of global gravity models and GOCE data[J]. Scientific Reports, 2015, 5: 11681. doi: 10.1038/srep11681 [8] Xu C, Liu Z W, Luo Z C, et al. Moho topography of the Tibetan Plateau using multi-scale gravity analysis and its tectonic implications[J]. Journal of Asian Earth Sciences, 2017, 138: 378-386. doi: 10.1016/j.jseaes.2017.02.028 [9] Chen W, Tenzer R. Moho modeling in spatial domain: A case study under Tibet[J]. Advances in Space Research, 2017, 59(12): 2855-2869. doi: 10.1016/j.asr.2017.03.015 [10] Baranov A, Bagherbandi M, Tenzer R. Combined gravimetric-seismic Moho model of Tibet[J]. Geosciences, 2018, 8(12): 461. doi: 10.3390/geosciences8120461 [11] Zhao G, Liu J, Chen B, et al. Moho beneath Tibet based on a joint analysis of gravity and seismic data[J]. Geochemistry, Geophysics, Geosystems, 2020, 21: e2019GC008849. [12] Wang Q, Zhang P Z, Freymueller J, et al. Present day crustal deformation in China constrained by global positioning system (GPS) measurements[J]. Science, 2001, 294: 574-577. doi: 10.1126/science.1063647 [13] 王伟, 王迪晋, 陈正松, 等. 用GPS资料分析青藏高原现今应变率场[J]. 大地测量与地球动力学, 2017, 37(9): 881-883. doi: 10.14075/j.jgg.2017.09.001Wang W, Wang D J, Chen Z S, et al. Present-day strain rate field of Tibetan Plateau analyzed by GPS measurements[J]. Journal of Geodesy and Geodynamics, 2017, 37(9): 881-883(in Chinese with English abstract). doi: 10.14075/j.jgg.2017.09.001 [14] Pan Y J, Shen W B, Shum C K, et al. Spatially varying surface seasonal oscillations and 3-D crustal deformation of the Tibetan Plateau derived from GPS and GRACE data[J]. Earth and Planetary Science Letters, 2018, 502: 12-22. doi: 10.1016/j.epsl.2018.08.037 [15] Pan Y J, Hammond W C, Ding H, et al. GPS imaging of vertical bedrock displacements: Quantification of two-dimensional vertical crustal deformation in China[J]. Journal of Geophysical Research, 2021, 126: e2020JB020951. [16] 陈石, 王谦身. 蒙古及周边地区重力异常和地壳不均匀体分布[J]. 地球物理学报, 2015, 58(1): 79-91. https://www.cnki.com.cn/Article/CJFDTOTAL-DQWX201501007.htmChen S, Wang Q S. Gravity anomalies and the distributions of inhomogeneous masses in the crust of Mongolia and its surrounding regions[J]. Chinese Journal of Geophysics, 2015, 58(1): 79-91(in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-DQWX201501007.htm [17] 吴开彬, 曾广乾, 陈国雄, 等. 布格重力异常揭示的贵州深部构造特征[J]. 地质科技通报, 2016, 35(1): 190-199. https://dzkjqb.cug.edu.cn/article/id/9101Wu K B, Zeng G Q, Chen G X, et al. Deep structural features of Guizhou revealed by Bouguer gravity anomaly[J]. Bulletin of Geological Science and Technology, 2016, 35(1): 190-199(in Chinese with English abstract). https://dzkjqb.cug.edu.cn/article/id/9101 [18] 杨文采, 瞿辰, 侯遵泽, 等. 中国大陆克拉通地体地壳密度结构特征[J]. 地质论评, 2017, 63(4): 843-853. doi: 10.16509/j.georeview.2017.04.001Yang W C, Qu C, Hou Z Z, et al. Crustal density structures of craton terrains in continent of China[J]. Geological Review, 2017, 63(4): 843-853(in Chinese with English abstract). doi: 10.16509/j.georeview.2017.04.001 [19] 单斌, 周万里. 岩石圈结构成像方法的进展与展望[J]. 地质科技通报, 2022, 41(5): 112-121. doi: 10.19509/j.cnki.dzkq.2022.0241Shan B, Zhou W L. Methods and prospects for lithospheric structure imaging[J]. Bulletin of Geological Science and Technology, 2022, 41(5): 112-121(in Chinese with English abstract). doi: 10.19509/j.cnki.dzkq.2022.0241 [20] Kaban M K, Khrepy S E, Al-Arifi N. Isostatic model and isostatic gravity anomalies of the Arabian Plate and surroundings[J]. Pure & Applied Geophysics, 2016, 173(4): 1211-1221. [21] Kaban M K, Schwintzer P, Tikhotsky S A. A global isostatic gravity model of the Earth[J]. Geophysical Journal International, 1999, 136(3): 519-536. doi: 10.1046/j.1365-246x.1999.00731.x [22] 陈石, 王谦身, 祝意青, 等. 青藏高原东缘重力导纳模型均衡异常时空特征[J]. 地球物理学报, 2011, 54(1): 22-34. doi: 10.3969/j.issn.0001-5733.2011.01.004Chen S, Wang Q S, Zhu Y Q, et al. Temporal and spatial features of isostasy anomaly using gravitational admittance model at eastern margin of Tibetan Plateau[J]. Chinese Journal of Geophysics, 2011, 54(1): 22-34(in Chinese with English abstract). doi: 10.3969/j.issn.0001-5733.2011.01.004 [23] 张星宇, 陈超, 杜劲松, 等. 天山及邻区Vening Meinesz均衡重力异常特征及其动力学意义[J]. 地球物理学报, 2020, 63(10): 3791-3803. doi: 10.6038/cjg2020N0448Zhang X Y, Chen C, Du J S, et al. Characteristics of Vening Meinesz isostatic gravity anomalies in Tien Shan and surroundings and its dynamic significances[J]. Chinese Journal of Geophysics, 2020, 63(10): 3791-3803(in Chinese with English abstract). doi: 10.6038/cjg2020N0448 [24] Kirby J F. On the pitfalls of Airy isostasy and the isostatic gravity anomaly in general[J]. Geophysical Journal International, 2019, 216: 103-122. [25] Simpson R W, Jachens R C, Blakely R J, et al. A new isostatic residual gravity map of the conterminous United States with a discussion on the significance of isostatic residual anomalies[J]. Journal of Geophysical Research, 1986, 91(B8): 8348-8372. doi: 10.1029/JB091iB08p08348 [26] Ussami N, de Sá N C, Molina E C. Gravity map of Brazil: 2. Regional and residual isostatic anomalies and their correlation with major tectonic provinces[J]. Journal of Geophysical Research, 1993, 98(B2): 2199-2208. [27] Watts A B, Moore J D P. Flexural isostasy: Constraints from gravity and topography power spectra[J]. Journal of Geophysical Research, 2017, 122: 8417-8430. doi: 10.1002/2017JB014571 [28] Audet P, Bürgmann R. Dominant role of tectonic inheritance in supercontinent cycles[J]. Nature Geoscience, 2011, 4: 184-187. doi: 10.1038/ngeo1080 [29] Tesauro M, Audet P, Kaban M K, et al. The effective elastic thickness of the continental lithosphere: Comparison between rheological and inverse approaches[J]. Geochemistry Geophysics Geosystems, 2012, 13: Q09001. [30] Kaban M K, Delvaux D, Maddaloni F, et al. Thickness of sediments in the Congo Basin based on the analysis of decompensative gravity anomalies[J]. Journal of African Earth Sciences, 2021, 179: 104201. doi: 10.1016/j.jafrearsci.2021.104201 [31] Kaban M K, Gvishiani A, Sidorov R, et al. Structure and density of sedimentary basins in the southern part of the East-European Platform and surrounding area[J]. Applied Sciences, 2021, 11(2): 512. doi: 10.3390/app11020512 [32] 许志琴, 杨经绥, 李海兵, 等. 造山的高原: 青藏高原的地体拼合、碰撞造山及隆升机制[M]. 北京: 地质出版社, 2007.Xu Z Q, Yang J S, Li H B, et al. Orogenic plateau: Terrane ammalgatation, collisional orogeny and uplifting of the Qinghai-Tibet Plateau[M]. Beijing: Geological Publishing House, 2007(in Chinese with English abstract). [33] Amante C, Eakins B W. ETOPO1 1 arc-minute global relief model: Procedures, data sources and analysis[C]//Anon. NOAA Technical Memorandum NESDIS NGDC-24, National Geophysical Data Center, NOAA. [S. l.]: [s. n.], 2009: 1-9. [34] Pandey S, Yuan X, Debayle E, et al. A 3D shear-wave velocity model of the upper mantle beneath China and the surrounding areas[J]. Tectonophysics, 2014, 633: 193-210. doi: 10.1016/j.tecto.2014.07.011 [35] 李廷栋. 青藏高原隆升的过程和机制[J]. 地球学报, 1995, 34(1): 1-9. https://www.cnki.com.cn/Article/CJFDTOTAL-DQXB501.000.htmLi T D. The uplifting process and mechanism of the Qinghai-Tibet Plateau[J]. Acta Geoscientia Sinica, 1995, 34(1): 1-9(in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-DQXB501.000.htm [36] Tapponnier P, Xu Z Q, Roger F, et al. Oblique stepwise rise and growth of the Tibet Plateau[J]. Science, 2001, 294: 1671-1677. doi: 10.1126/science.105978 [37] Royden L H, Burchfiel B C, van der Hilst R D. The geological evolution of the Tibetan Plateau[J]. Science, 2008, 321: 1054-1058. doi: 10.1126/science.1155371 [38] Airy G B. On the computations of the effect of the attraction of the mountain-masses, as disturbing the apparent astronomical latitude of stations in geodetic surveys[J]. Philosophical Transactions of the Royal Society of London, 1855, 145: 101-104. doi: 10.1098/rstl.1855.0003 [39] Pratt J H. On the attraction of the Himalaya Mountains, and of the elevated regions beyond them, upon the plumb-line in India[J]. Philosophical Transactions of the Royal Society of London, 1855, 145: 53-100. doi: 10.1098/rstl.1855.0002 [40] Vening Meinesz F A. Une nouvelle méthode pour la réduction isostatique régionale de l'intensité de la pesanteur[J]. Bulletin Géodésique, 1931, 29: 33-51. doi: 10.1007/BF03030038 [41] Stark C P, Stewart J, Ebinger C J. Wavelet transform mapping of effective elastic thickness and plate loading: Validation using synthetic data and application to the study of southern African tectonics[J]. Journal of Geophysical Research, 2003, 108 (B12): 2558. doi: 10.1029/2001JB000609 [42] Kirby J F, Swain C J. An accuracy assessment of the fan wavelet coherence method for elastic thickness estimation[J]. Geochemistry, Geophysics, Geosystems, 2008, 9(3): Q03022. [43] Sjöberg L E. Solving Vening Meinesz-Moritz inverse problem in isostasy[J]. Geophysical Journal International, 2009, 179(3): 1527-1536. doi: 10.1111/j.1365-246X.2009.04397.x [44] Förste C, Bruinsma S L, Abrikosov O, et al. EIGEN-6C4 The latest combined global gravity field model including GOCE data up to degree and order 2190 of GFZ Potsdam and GRGS Toulouse[C]//Anon. EGU General Assembly Conference Abstracts. [S. l.]: [s. n.], 2014: 3707. [45] Parker R L. The rapid calculation of potential anomalies[J]. Geophysical Journal International, 1973, 31(4): 447-455. doi: 10.1111/j.1365-246X.1973.tb06513.x [46] Kirby J F, Swain C J. A reassessment of spectral Te estimation in continental interiors: The case of North America[J]. Journal of Geophysical Research, 2009, 114(B8): B08401. [47] Kirby J F, Swain C J. Improving the spatial resolution of effective elastic thickness estimation with the fan wavelet transform[J]. Computers & Geosciences, 2011, 37(9): 1345-1354. [48] Chen B, Chen C, Kaban M K, et al. Variations of the effective elastic thickness over China and surroundings and their relation to the lithosphere dynamics[J]. Earth and Planetary Science Letters, 2013, 363: 61-72. doi: 10.1016/j.epsl.2012.12.022 [49] Jordan T A, Watts A B. Gravity anomalies, flexure and the elastic thickness structure of the India-Eurasia collisional system[J] Earth and Planetary Science Letters, 2005, 236(3/4): 732-750. [50] Wienecke S, Braitenberg C, Götze H J. A new analytical solution estimating the flexural rigidity in the Central Andes[J]. Geophysical Journal International, 2007, 169(3): 789-794. doi: 10.1111/j.1365-246X.2007.03396.x [51] Li Y, Yang Y. Isostatic state and crustal structure of North China Craton derived from GOCE gravity data[J]. Tectonophysics, 2020, 786: 228475. [52] Stolk W, Kaban M, Beekman F, et al. High resolution regional crustal models from irregularly distributed data: Application to Asia and adjacent areas[J]. Tectonophysics, 2013, 602: 55-68. [53] Laske G, Masters G, Ma Z T, et al. Update on CRUST1.0-a 1-degree global model of earth's crust[C]//Anon. EGU General Assembly Conference Abstracts. Vienna, Austria: [s. n.], 2013: 2658. [54] Watts A B. Isostasy and flexure of the lithosphere[M]. Cambridge: Cambridge University Press, 2001. [55] Ge W P, Molnar P, Shen Z K, et al. Present-day crustal thinning in the and northern Tibetan Plateau revealed by GPS measurements[J]. Geophysical Research Letters, 2015, 42: 5227-5235. [56] Molnar P, Tapponnier P. Active tectonics of Tibet[J]. Journal of Geophysical Research, 1978, 83: 5361-5375. [57] Bao X W, Song X D, Li J T. High-resolution lithospheric structure beneath Mainland China from ambient noise and earthquake surface-wave tomography[J]. Earth and Planetary Science Letters, 2015, 417: 132-141. [58] Xin H L, Zhang H J, Kang M, et al. High-resolution lithospheric velocity structure of continental China by double-difference seismic travel-time tomography[J]. Seismological Research Letters, 2018, 90(1): 229-241. [59] Rui X, Stamps D S. A geodetic strain rate and tectonic velocity model for China[J]. Geochemistry, Geophysics, Geosystems, 2019, 20: 1280-1297. [60] Wang C S, Zhao X X, Liu Z F, et al. Constraints on the early uplift history of the Tibetan Plateau[J]. Proceedings of the National Academy of Sciences of the United States of America, 2008, 105(13): 4987-4992. [61] Bao X W, Song X D, Eaton D W, et al. Episodic lithospheric deformation in eastern Tibet inferred from seismic anisotropy[J]. Geophysical Research Letters, 2020, 47: e2019GL085721. [62] Yuan X H, Ni J, Kind R, et al. Lithospheric and upper mantle structure of southern Tibet from a seismological passive source experiment[J]. Journal of Geophysical Research, 1997, 102: 27491-27500. [63] Kind R, Yuan X H, Saul J, et al. Seismic images of crust and upper mantle beneath Tibet: Evidence for Eurasian plate subduction[J]. Science, 2002, 298: 1219-1221. [64] Nabelek J, Hetenyi G, Vergne J, et al. Underplating in the Himalaya-Tibet collision zone revealed by the Hi-CLIMB experiment[J]. Science, 2009, 325: 1371-1374. [65] 赵俊猛, 张培震, 张先康, 等. 中国西部壳幔结构与动力学过程及其对资源环境的制约: "羚羊计划"研究进展[J]. 地学前缘, 2021, 28(5): 230-259. https://www.cnki.com.cn/Article/CJFDTOTAL-DXQY202105030.htmZhao J M, Zhang P Z, Zhang X K, et al. Crust-mantle structure and geodymanics processes in western China and their constraints on resources and enviroment: Research progress of the ANTILOPE Project[J]. Earth Science Frontiers, 2021, 28(5): 230-259(in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-DXQY202105030.htm [66] Wittlinger G, Vergne J, Tapponnier P, et al. Teleseismic imaging of subducting lithosphere and Moho offsets beneath western Tibet[J]. Earth and Planetary Science Letters, 2004, 221(1/4): 117-130. [67] Zhao J M, Yuan X H, Liu H B, et al. The boundary between the Indian and Asian tectonic plates below Tibet[J]. Proceedings of the National Academy of Sciences of the United States of America, 2010, 107(25): 11229-11233. [68] Zhang Z J, Yuan X H, Yun C, et al. Seismic signature of the collision between the east Tibetan escape flow and the Sichuan Basin[J]. Earth and Planetary Science Letters, 2010, 292(3/4): 254-264.