Relationship between argillaceous content and distance to main faulted zone and fractures development in the platform carbonate rocks of Yijianfang Formation in Shunbei area, Tarim Basin
-
摘要: 在塔里木盆地顺北地区奥陶系走滑断裂带寻找碳酸盐岩"断溶体"型油气藏成为近年来油气勘探的热点。多口钻井显示顺北1号主走滑断裂带"断溶体"裂缝发育部位普遍具有异常高的自然伽马测井值。因此,可以根据异常高泥质含量参数来反映裂缝发育程度,进而指示含泥"断溶体"储层的发育位置。首先利用GeoEast软件提取了顺北1号走滑断裂带T74界面(一间房组顶)相干体属性并进行了断裂解释。根据5口井一间房组自然伽马测井数据,探讨了台地碳酸盐岩走滑断裂带断核和损伤带异常高泥质含量值与主干断裂带距离和裂缝发育程度之间的关系。结果表明:顺北地区奥陶系一间房组台地碳酸盐岩沉积环境稳定,背景泥质含量较低;NE向主走滑断裂带核部和裂缝发育部位的泥质含量远高于台地碳酸盐岩背景值,具有随着离主干断裂带距离增大和裂缝发育程度下降而降低的变化趋势,最终接近其背景值。由此表明,可利用自然伽马测井计算泥质含量,间接指示走滑断裂带"断溶体"储层发育程度。该研究为深层-超深层走滑断裂带储层评价提供了一种新的思路。Abstract: The exploration of carbonate "fault-karst" reservoirs in Ordovician strike-slip fault zone in Shunbei area of Tarim basin has become a hot spot recently.Multiple drilling wells in Shunbei area of Tarim Basin show that the fault zone and fracture development site generally have unusually high natural gamma logging values.Therefore, according to the parameters of abnormally high shale content, reflect the degree of fracture development, so as to indicate the development location of the reservoir containing mud fault solution.In this paper, the coherent properties of the T74 interface of Shunbei 1 strike-slip fault zone were extracted and interpreted by GeoEast software.Then, according to the natural gamma ray logging data of Yijianfang Formation in 5 Wells, the relationship between the abnormal high shale content of strike-slip fault zone and damage zone of platform carbonate rocks and the distance of main fracture zone and the degree of fracture development was discussed.The results show that the sedimentary environment of carbonate platform in Yijianfang Formation of Ordovician in Shunbei area is stable and the background argillaceous content is low.The argillaceous content at the core and fracture development site of the NE main fault is much higher than the background value of platform carbonate rocks, which decreases with the increase of distance from the PDZ and the decrease of fracture development, and finally approaches its background value.This indicates that the shale content can be calculated by natural gamma ray logging, which indirectly indicates the development degree of "fault-karst" reservoir in strike-slip fault zone.It provides a new thinking for reservoir evaluation of deep and super deep strike-slip fault zone.
-
Key words:
- platform carbonate /
- argillaceous content /
- strike-slip fault /
- Shunbei area /
- Yijianfang Formation /
- Tarim Basin
-
图 3 顺北地区一间房组自然伽马测井(GR)计算泥质含量(Vshi)和异常泥质含量(ΔVshi)单井柱状图(岩性同图 1)
Figure 3. Columnar section of GR, Vshi and ΔVshi data curves of Yijianfang Formation in Well SHB1-3, SHB1, SHB2 and SHBP3H, respectively in Shunbei area
表 1 顺北地区各井典型区段ΔVshi计算值(背景值Vshi0=2.21%)
Table 1. Calculation table of typical section ΔVshi in Shunbei area
井号 层位 深度/m GR/API 泥质含量指数SH Vshi/% ΔVshi/% 断裂带结构 SHB1-3 O2yj 7 256.540 51.35 0.66 37.22 35.01 断层核 SHB1-3 O2yj 7 256.665 50.50 0.65 35.82 33.61 断层核 SHB1-3 O2yj 7 256.790 49.54 0.64 34.29 32.08 断层核 SHB1-3 O2yj 7 256.915 48.85 0.63 33.22 31.01 断层核 SHB1-3 O2yj 7 257.040 48.08 0.62 32.07 29.86 断层核 SHB1-3 O2yj 7 257.165 47.94 0.61 31.87 29.66 断层核 SHB1-3 O2yj 7 257.290 47.89 0.61 31.79 29.58 断层核 SHB1-3 O2yj 7 257.415 47.30 0.60 30.93 28.72 断层核 SHB1-3 O2yj 7 257.540 45.99 0.59 29.09 26.88 断层核 SHB1-3 O2yj 7 257.665 43.62 0.55 25.98 23.77 断层核 SHB1-3 O2yj 7 257.790 39.75 0.50 21.44 19.23 断层核 SHB1-3 O2yj 7 257.915 37.42 0.46 19.01 16.80 断层核 SHB1-3 O2yj 7 258.040 35.71 0.44 17.34 15.13 断层核 SHB1-3 O2yj 7 258.165 34.07 0.42 15.84 13.63 断层核 SHB1-3 O2yj 7 258.290 32.11 0.39 14.17 11.96 断层核 SHB1-3 O2yj 7 258.415 32.34 0.39 14.36 12.15 断层核 SHB1-3 O2yj 7 258.540 33.30 0.40 15.17 12.96 断层核 SHB1-3 O2yj 7 258.665 35.23 0.43 16.90 14.69 断层核 SHB1-3 O2yj 7 258.790 38.29 0.48 19.89 17.68 断层核 SHB1-3 O2yj 7 258.915 39.58 0.49 21.26 19.05 断层核 SHB1-3 O2yj 7 259.040 40.02 0.50 21.73 19.52 断层核 SHB1-3 O2yj 7 259.165 39.69 0.50 21.37 19.16 断层核 SHB1-3 O2yj 7 259.290 38.71 0.48 20.33 18.12 断层核 SHB1-3 O2yj 7 259.415 37.54 0.46 19.13 16.92 断层核 SHB1-3 O2yj 7 259.540 36.72 0.45 18.31 16.10 断层核 SHB1-3 O2yj 7 259.665 36.42 0.45 18.02 15.81 断层核 SHB1-3 O2yj 7 259.790 36.18 0.45 17.79 15.58 断层核 SHB1-3 O2yj 7 259.915 36.06 0.44 17.67 15.46 断层核 SHB1-3 O2yj 7 260.040 35.90 0.44 17.53 15.32 断层核 SHB1-3 O2yj 7 260.165 36.51 0.45 18.11 15.90 断层核 SHB1 O2yj 7 285.640 55.07 0.69 40.18 37.97 断层核 SHB1 O2yj 7 285.765 53.79 0.67 37.96 35.75 断层核 SHB1 O2yj 7 285.890 54.07 0.67 38.43 36.22 断层核 SHB1 O2yj 7 286.015 53.53 0.66 37.51 35.30 断层核 SHB1 O2yj 7 286.140 50.73 0.62 33.04 30.83 断层核 SHB1 O2yj 7 286.265 46.67 0.57 27.32 25.11 断层核 SHB1 O2yj 7 286.390 43.56 0.52 23.48 21.27 断层核 SHB1 O2yj 7 286.515 41.62 0.49 21.30 19.09 断层核 SHB1 O2yj 7 286.640 40.64 0.48 20.25 18.04 断层核 SHB1 O2yj 7 286.765 39.59 0.47 19.18 16.97 断层核 SHB1 O2yj 7 286.890 36.73 0.42 16.44 14.23 断层核 SHB1 O2yj 7 287.015 32.48 0.36 12.87 10.66 断层核 SHB1 O2yj 7 287.140 27.80 0.30 9.52 7.31 断层核 SHB1 O2yj 7 287.265 24.27 0.25 7.36 5.15 损伤带 SHB1 O2yj 7 287.390 23.72 0.24 7.04 4.83 损伤带 SHB1 O2yj 7 287.515 24.94 0.26 7.75 5.54 损伤带 SHB1 O2yj 7 287.640 26.86 0.28 8.92 6.71 断层核 SHB1 O2yj 7 287.765 28.89 0.31 10.25 8.04 断层核 SHB1 O2yj 7 287.890 30.04 0.33 11.05 8.84 断层核 SHB1 O2yj 7 288.015 30.35 0.33 11.27 9.06 断层核 SHB1 O2yj 7 288.140 30.14 0.33 11.13 8.92 断层核 SHB1 O2yj 7 288.265 30.36 0.33 11.28 9.07 断层核 SHB1 O2yj 7 288.390 31.71 0.35 12.28 10.07 断层核 SHB1 O2yj 7 288.515 33.38 0.38 13.57 11.36 断层核 SHB1 O2yj 7 288.640 34.38 0.39 14.40 12.19 断层核 SHB1 O2yj 7 288.765 34.43 0.39 14.44 12.23 断层核 SHB1 O2yj 7 288.890 33.40 0.38 13.60 11.39 断层核 SHB1 O2yj 7 289.015 31.72 0.35 12.28 10.07 断层核 SHB1 O2yj 7 289.140 29.58 0.32 10.73 8.52 断层核 SHB1 O2yj 7 289.265 27.32 0.29 9.21 7.00 断层核 SHB2 O2yj 7 358.380 28.11 0.26 7.85 5.64 损伤带 SHB2 O2yj 7 358.505 28.12 0.26 7.86 5.65 损伤带 SHB2 O2yj 7 358.630 28.15 0.26 7.87 5.66 损伤带 SHB2 O2yj 7 358.755 28.42 0.26 8.03 5.82 损伤带 SHB2 O2yj 7 358.880 28.56 0.27 8.12 5.91 损伤带 SHB2 O2yj 7 359.005 28.25 0.26 7.93 5.72 损伤带 SHB2 O2yj 7 359.130 28.01 0.26 7.79 5.58 损伤带 SHB2 O2yj 7 359.255 27.49 0.25 7.49 5.28 损伤带 SHB2 O2yj 7 359.380 27.67 0.25 7.59 5.38 损伤带 SHB2 O2yj 7 359.505 27.98 0.26 7.77 5.56 损伤带 SHB2 O2yj 7 359.630 28.26 0.26 7.94 5.73 损伤带 SHB2 O2yj 7 359.755 28.91 0.27 8.33 6.12 损伤带 SHB2 O2yj 7 359.880 28.45 0.26 8.05 5.84 损伤带 SHB2 O2yj 7 360.005 27.71 0.25 7.61 5.40 损伤带 SHB2 O2yj 7 360.130 27.57 0.25 7.53 5.32 损伤带 SHB2 O2yj 7 360.255 27.77 0.25 7.65 5.44 损伤带 SHB2 O2yj 7 360.380 28.25 0.26 7.93 5.72 损伤带 SHB2 O2yj 7 360.505 27.91 0.26 7.73 5.52 损伤带 SHB2 O2yj 7 360.630 27.25 0.25 7.34 5.13 损伤带 SHB2 O2yj 7 360.755 25.54 0.22 6.40 4.19 损伤带 SHB2 O2yj 7 360.880 26.28 0.23 6.80 4.59 损伤带 SHB2 O2yj 7 361.005 27.49 0.25 7.49 5.28 损伤带 SHB2 O2yj 7 361.130 27.99 0.26 7.78 5.57 损伤带 SHB2 O2yj 7 361.255 28.45 0.26 8.05 5.84 损伤带 SHB2 O2yj 7 361.380 26.45 0.23 6.89 4.68 损伤带 SHB2 O2yj 7 361.505 24.06 0.20 5.62 3.41 损伤带 SHB2 O2yj 7 361.630 23.35 0.19 5.26 3.05 围岩 SHB2 O2yj 7 361.755 22.70 0.18 4.94 2.73 围岩 SHB2 O2yj 7 361.880 23.76 0.20 5.47 3.26 围岩 SHB2 O2yj 7 362.005 24.56 0.21 5.87 3.66 损伤带 SHBP3H O2yj 7 392.800 20.71 0.20 5.44 3.23 围岩 SHBP3H O2yj 7 392.925 24.24 0.25 7.34 5.13 损伤带 SHBP3H O2yj 7 393.050 26.78 0.28 8.87 6.66 损伤带 SHBP3H O2yj 7 393.175 27.09 0.29 9.07 6.86 损伤带 SHBP3H O2yj 7 393.300 26.15 0.27 8.48 6.27 损伤带 SHBP3H O2yj 7 393.425 23.58 0.24 6.97 4.76 损伤带 SHBP3H O2yj 7 393.550 22.03 0.21 6.12 3.91 损伤带 SHBP3H O2yj 7 393.675 21.75 0.21 5.98 3.77 损伤带 SHBP3H O2yj 7 393.800 22.22 0.22 6.22 4.01 损伤带 SHBP3H O2yj 7 393.925 24.07 0.24 7.24 5.03 损伤带 SHBP3H O2yj 7 394.050 25.44 0.26 8.04 5.83 损伤带 SHBP3H O2yj 7 394.175 25.53 0.26 8.10 5.89 损伤带 SHBP3H O2yj 7 394.300 24.85 0.26 7.70 5.49 损伤带 SHBP3H O2yj 7 394.425 23.44 0.23 6.89 4.68 损伤带 SHBP3H O2yj 7 394.550 22.86 0.23 6.57 4.36 损伤带 SHBP3H O2yj 7 394.675 23.42 0.23 6.88 4.67 损伤带 SHBP3H O2yj 7 394.800 24.27 0.25 7.36 5.15 损伤带 SHBP3H O2yj 7 394.925 24.47 0.25 7.48 5.27 损伤带 SHBP3H O2yj 7 395.050 24.19 0.25 7.31 5.10 损伤带 SHBP3H O2yj 7 395.175 23.85 0.24 7.12 4.91 损伤带 SHBP3H O2yj 7 395.300 23.57 0.24 6.96 4.75 损伤带 SHBP3H O2yj 7 395.425 23.45 0.24 6.89 4.68 损伤带 SHBP3H O2yj 7 395.550 22.95 0.23 6.62 4.41 损伤带 SHBP3H O2yj 7 395.675 22.11 0.22 6.17 3.96 损伤带 SHBP3H O2yj 7 395.800 21.43 0.21 5.81 3.60 损伤带 SHBP3H O2yj 7 395.925 21.93 0.21 6.07 3.86 损伤带 SHBP3H O2yj 7 396.050 22.25 0.22 6.24 4.03 损伤带 SHBP3H O2yj 7 396.175 21.86 0.21 6.03 3.82 损伤带 SHBP3H O2yj 7 396.300 21.17 0.20 5.67 3.46 损伤带 SHBP3H O2yj 7 396.425 20.59 0.19 5.38 3.17 围岩 SHBP1H O2yj 7 383.700 14.62 0.12 3.09 0.88 围岩 SHBP1H O2yj 7 383.825 13.88 0.11 2.79 0.58 围岩 SHBP1H O2yj 7 383.950 13.46 0.11 2.62 0.41 围岩 SHBP1H O2yj 7 384.075 13.39 0.11 2.59 0.38 围岩 SHBP1H O2yj 7 384.200 14.69 0.12 3.13 0.92 围岩 SHBP1H O2yj 7 384.325 15.46 0.14 3.45 1.24 围岩 SHBP1H O2yj 7 384.450 15.32 0.13 3.39 1.18 围岩 SHBP1H O2yj 7 384.575 15.28 0.13 3.38 1.17 围岩 SHBP1H O2yj 7 384.700 13.86 0.11 2.78 0.57 围岩 SHBP1H O2yj 7 384.825 14.03 0.11 2.85 0.64 围岩 SHBP1H O2yj 7 384.950 14.61 0.12 3.09 0.88 围岩 SHBP1H O2yj 7 385.075 14.74 0.12 3.15 0.94 围岩 SHBP1H O2yj 7 385.200 13.71 0.11 2.72 0.51 围岩 SHBP1H O2yj 7 385.325 12.50 0.09 2.24 0.03 围岩 SHBP1H O2yj 7 385.450 11.96 0.09 2.03 0.00 围岩 SHBP1H O2yj 7 385.575 11.94 0.08 2.03 0.00 围岩 SHBP1H O2yj 7 385.700 12.67 0.10 2.31 0.10 围岩 SHBP1H O2yj 7 385.825 12.80 0.10 2.36 0.15 围岩 SHBP1H O2yj 7 385.950 12.84 0.10 2.37 0.16 围岩 SHBP1H O2yj 7 386.075 12.96 0.10 2.42 0.21 围岩 SHBP1H O2yj 7 386.200 12.37 0.09 2.19 0.00 围岩 SHBP1H O2yj 7 386.325 11.29 0.08 1.78 0.00 围岩 SHBP1H O2yj 7 386.450 10.21 0.06 1.39 0.00 围岩 SHBP1H O2yj 7 386.575 10.08 0.06 1.34 0.00 围岩 SHBP1H O2yj 7 386.700 10.29 0.06 1.42 0.00 围岩 SHBP1H O2yj 7 386.825 11.32 0.08 1.79 0.00 围岩 SHBP1H O2yj 7 386.950 13.23 0.10 2.53 0.32 围岩 SHBP1H O2yj 7 387.075 13.14 0.10 2.49 0.28 围岩 SHBP1H O2yj 7 387.200 18.23 0.17 4.71 2.50 围岩 SHBP1H O2yj 7 387.325 19.96 0.20 5.57 3.36 围岩 -
[1] 焦方正.塔里木盆地顺北特深碳酸盐岩断溶体油气藏发现意义与前景[J].石油与天然气地质, 2018, 39(2):207-216. http://www.cnki.com.cn/Article/CJFDTotal-SYYT201802002.htm [2] 鲁新便, 胡文革, 汪彦, 等.塔河地区碳酸盐岩断溶体油藏特征与开发实践[J].石油与天然气地质, 2015, 36(3):347-355. http://www.cnki.com.cn/Article/CJFDTotal-SYYT201503003.htm [3] 张鑫, 陈红汉, 龙昭, 等.泌阳凹陷北部缓坡带核桃园组油气运聚成藏过程[J].地质科技通报, 2020, 39(3):140-149. http://dzkjqb.cug.edu.cn/CN/abstract/abstract10031.shtml [4] Hooper E C D.Fluid migration along growth fault in compacting sediments[J].Journal of Petroleum Geology, 2010, 14(2):161-180. http://adsabs.harvard.edu/abs/1991JPetG..14..161H [5] 喻顺, 柳广弟, 孙明亮, 等.断裂系统对碳酸盐岩油气聚集的控制作用:以塔北隆起轮古东油气田为例[J].地质科技情报, 2014, 33(1):121-128. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=dzkjqb201401019 [6] Bastesen E, Braathen A.Extensional faults in fine grained carbonates:Analysis of fault core lithology and thickness-displacement relationships[J].Journal of Structural Geology, 2010, 32(11):1609-1628. doi: 10.1016/j.jsg.2010.09.008 [7] Billi A, Salvini F, Storti F.The damage zone-fault core transition in carbonate rocks:Implication for fault growth, structure and permeability[J].Journal of Structural Geology, 2003, 25(11):1779-1794. doi: 10.1016/S0191-8141(03)00037-3 [8] Fachri M, Tveranger J, Cardozo N, et al.The impact of fault envelope structure on fluid flow:A screening study using fault facies[J].AAPG Bulletin, 2011, 95(4):619-648. doi: 10.1306/09131009132 [9] Allan U S.Model for hydrocarbon migration and entrapment within faulted structures[J].AAPG Bulletin, 1989, 73(7):803-811. [10] Sorkhabi R, Tsuji Y.The place of faults in petroleum traps[J].AAPG Memoir, 2005, 85:1-31. http://www.researchgate.net/publication/279713775_The_place_of_faults_in_petroleum_traps [11] 王志伟.新北油田右旋走滑应力场内断层封堵性及其对成藏的控制作用[J].地质科技情报, 2019, 38(4):145-152. http://kns.cnki.net/KCMS/detail/detail.aspx?dbcode=CJFD&filename=DZKQ201904015 [12] 邓尚, 李慧莉, 张仲培, 等.塔里木盆地顺北及邻区主干走滑断裂带差异活动特征及其与油气富集关系[J].石油与天然气地质, 2018, 39(5):878-888. http://www.cqvip.com/QK/95357X/20185/7000845618.html [13] 马洪敏.塔里木盆地北部奥陶系碳酸盐岩含泥缝洞型储层评价方法研究[D].武汉: 长江大学, 2012. [14] 付晓飞, 郭雪, 朱丽旭, 等.泥岩涂抹形成演化与油气运移及封闭[J].中国矿业大学学报, 2012, 19(3):615-621. http://www.cnki.com.cn/Article/CJFDTotal-ZGKD201201011.htm [15] 付广, 胡欣蕾.利用断层岩泥质含量判断断层垂向封闭性的方法及其应用[J].地球科学与环境学报, 2016, 38(5):660-667. http://www.cnki.com.cn/Article/CJFDTotal-XAGX201605009.htm [16] 胡慧婷, 王龙, 刘岩, 等.超压泥岩盖层中断层垂向封闭能力研究方法及应用[J].石油与天然气地质, 2014, 35(3):359-364. http://www.cnki.com.cn/Article/CJFDTotal-SYYT201403010.htm [17] 王雪峰.断裂输导油气能力综合评价方法及其应用[J].大庆石油地质与开发, 2017, 36(3):33-38. http://www.cnki.com.cn/Article/CJFDTotal-DQSK201703007.htm [18] 吕端川, 吕延防, 王岐, 等.断层泥摩擦系数的影响因素[J].大庆石油地质与开发, 2015, 34(3):42-46. http://www.cqvip.com/QK/91950X/20153/665019860.html [19] 耿乃光, 郝晋昇, 李纪汉, 等.断层泥力学性质与含水量关系初探[J].地震地质, 1986, 8(3):56-60. [20] 张军涛, 吴世祥, 唐德海, 等.含泥碳酸盐岩埋藏条件下溶蚀作用的实验模拟[J].石油实验地质, 2013, 35(2):220-230. http://d.wanfangdata.com.cn/Periodical/sysydz201302022 [21] 韩杰, 袁源, 洪涛, 等.轮古东走滑断裂损伤带结构及与油气关系[J].中国地质, 2016, 43(4):1304-1316. http://www.cnki.com.cn/Article/CJFDTotal-DIZI201604017.htm [22] 王建忠, 向才富, 庞雄奇.碳酸盐岩层系断层封闭机理研究[J].中国矿业大学学报, 2013, 42(4):616-624. http://www.cnki.com.cn/Article/CJFDTotal-ZGKD201304016.htm [23] Choi J H, Edwards P, Ko K, et al.Definition and classification of fault damage zones:A review and a new methodological approach[J].Earth Science Reviews, 2016, 152:70-87. doi: 10.1016/j.earscirev.2015.11.006 [24] Welbon A I, Brockbank P J, McCallum J E.Reservoir damage around faults:Outcrop examples from the Suez rift[J].Petroleum Geoscience, 1999, 5:109-116. doi: 10.1144/petgeo.5.2.109 [25] 陈红汉, 吴悠, 朱红涛, 等.塔中地区北坡中-下奥陶早成岩岩溶作用及储层形成模式[J].石油学报, 2016, 37(10):1231-1246. [26] 彭德丽.利用地震信息估计储层泥质含量及孔隙度的方法探讨[D].北京: 中国地质大学(北京), 2006. [27] 刘卫国, 宋宪生, 郭长林, 等.利用自然伽马测井数据计算地层泥质含量[J].铀矿地质, 2017, 33(1):45-54. http://www.cnki.com.cn/Article/CJFDTotal-YKDZ201701007.htm [28] 王伟, 吕延防, 付广, 等.利用拟声波约束反演求取泥质含量的新方法及在断层侧向封闭性评价中的应用[J].地球物理学进展, 2017, 32(2):737-744. http://www.cqvip.com/QK/98047X/201702/672114986.html [29] 丁次乾.矿场地球物理[M].山东东营:中国石油大学出版社, 2008.