Research on hydrothermal petroleum and its organic matter
-
摘要: 石油与天然气的成因长期存在有机成因和无机成因的争议。近年来, 全球不同大洋洋底热液衍生石油的发现, 为更进一步探索油气成因提供了新的思考。在回顾有机生油假说和无机生油假说基本理论和二者争论的基础上,重点介绍了热液衍生石油及其有机质的特点和研究进展。然后结合三塘湖盆地、鄂尔多斯盆地烃源岩中热液喷流沉积的研究取得了以下重要认识:①热液衍生石油的有机质来源于陆源高等植物和洋底低等生物,该生物是围绕热液喷口生活的嗜热、嗜毒、耐高温生物;②热液衍生石油不需要埋藏来持续提供热量,海底热液活动为其提供了物质和热量;③在有机质与深源热物质流体发生物理化学作用的过程中,有机质“瞬时”(时间很短)热解成油,部分转化为类似于石油的产品。热液衍生石油及其有机质的研究不仅能进一步深化人们对油气成因的认识,而且对非常规石油的勘探开发具有重要意义。Abstract: The causes of oil and natural gas formation have long been controversial about organic and inorganic causes. In recent years, the discovery of hydrothermal genesis in different oceans around the world has further provided new thinking for the exploration of oil and gas genesis. On the basis of reviewing the basic theory of organic oil-producing hypothesis, inorganic oil-producing hypothesis and the dispute between the two, authors focused on the characteristics and research progress of hydrothermally derived petroleum and its organic matter. Then combined with the study of hydrothermal jet deposition in the source rocks of Santanghu Basin and Ordos Basin, the following important insights were obtained: ①The organic matter derived from hydrothermal oil is derived from terrestrial higher plants and lower ocean organisms, the latter being thermophilic, poisonous, and high temperature resistant organisms living around hydrothermal vents. ②Hydrothermal oil does not need to be buried to continuously provide heat, and submarine hydrothermal activities provide material and heat for it. ③In the process of physicochemical interaction between organic matter and deep-source thermal material fluid, organic matter is "instantaneously" (short time) pyrolyzed into oil and partially converted into petroleum-like products. The study of hydrothermally oil and its organic matter can not only deepen people's understanding of the causes of oil and gas, but also have great significance for the exploration and development of unconventional oil.
-
图 1 不同热液喷口的形成模式图
图中蓝色、黄色和红色箭头分别表示低温、中温和高温流体,无色箭头只表示流动方向。数字表示不同的热液区:①岛弧;②死火山;③海山;④洋中脊侧翼;⑤洋中脊;⑥蛇纹岩底辟体。底图据文献[7]
Figure 1. Formation patterns of different hydrothermal vents
图 3 深层生命
A.来自南非Kopanang金矿地表以下1.4 km深处的不明线虫(Poikilolaimus sp.),左边的长20 μm[33-34];B.古细菌群(ANME-2细胞,红色)和细菌(Desulfosarcina/Desulfococcus物种,绿色)中的细胞一起工作,以从海底渗漏的甲烷中获取能量[35];C.南非约翰内斯堡附近Mponeng金矿,2.8 km深处充满液体和充气的裂缝内发现的Candidatus Desulforudis audaxviator(紫色,蓝色棒状细胞跨越橙色碳球)细菌[36];D.这些古生物Altiarchaeales最初被发现生活在德国的硫化泉中[37]
Figure 3. Deep life
图 4 土卫六的生命迹象
A.用卡西尼观测土卫六整体轮廓(图片来源:NASA/JPL-Caltech/SSI);B.卡西尼”号拍摄到的液态甲烷湖泊,与地球湖泊相似(图片来源:NASA/JPL/Space Science Institute);C.土卫六的3个最大湖泊及周边区域,图像由“卡西尼”号的无线电探测和测距仪获取(图片来源:NASA/JPL/Space Science Institute);D.Sotra Facula是土卫六上的一座低温火山(图片来源:NASA/JPL-Caltech/USGS/University of Arizona);E.土卫六的甲烷湖泊清晰可见(图片来源:NASA/JPL/Space Science Institute);F.土卫六的甲烷湖(图片来源:NASA/JPL/Space Science Institute)
Figure 4. Signs of life in Titan
图 5 鄂尔多斯盆地铜川地区长73热水沉积岩及其有机质[50]
a.鄂尔多斯盆地霸王庄剖面长7-3热液通道,通道两边分布有层状黄铁矿和自然坠落的星散状角砾黄铁矿,正交光;b.热液流体流入地层,靠近热液的黑色区域成油,远离热液的褐色区域未成油,正交光;c.图a中3号红框局部放大照片,黑色沥青围绕热水角砾黄铁矿发育,单偏光;d.图a中1号红框局部放大照片,热水白云石与油共生,正交光;e.热液流体流入地层促使有机质生烃,正交光;f.黑色沥青围绕热水角砾黄铁矿发育,单偏光;g.图a中2号红框局部放大照片,热液通道附近的热水白云岩发育水爆角砾构造,正交光;h.热水白云岩,正交光;i.热液通道内部,热水白云石与黑色的油共生,正交光
Figure 5. Hydrothermal sedimentary rock and its organic matter of Chang 73 section in Tongchuan area, Ordos Basin
图 6 三塘湖盆地二叠系芦草沟组白云岩的流体包裹体特征[51]
A.吉井盐水包裹体;B.吉井环带方解石包裹体分布;C.环带方解石不同位置的均一温度;D, E, F.马井中盐水包裹体,由盐水溶液组成,可见气、液两相或纯液相,少见规则椭圆形包裹体,多见不规则状包裹体,大小在2~12 μm之间,气液比在10%~25%之间,E, F在测温前进行了拉曼分析
Figure 6. Characteristics of fluid inclusion of dolomite of Permian Lucaogou Formation in Santanghu Basin
表 1 不同地区热液衍生石油特点
Table 1. Characteristics of hydrothermal petroleum in different regions
位置 w(TOC)/% 石油组分wB 特征 脂肪烃 芳香烃 鲛烷 沥青 Escanaba海槽[9] 0.44 2% 44% 14%~40% 54% 沥青胶结物含量较高,并含金属硫化物 Guaymas盆地[5] 2.00 3% 23% 13%~35% 74% 石油独立产出或呈含石油沉积物出现 东太平洋洋脊13°N[5] 0.40 1.0 μg/g 15%~34% 东太平洋洋脊21°N[5] 0.5~6 ng/g 14%~40% 红海海槽[11] 0.14 230 ng/g 15%~40% 加利福尼亚湾[11] 65% 15% 1%~40% 20% 大西洋TAG热液区(26°N)[12] 1%~25% 石油产出于金属硫化物粒间 表 2 不同地区“热液衍生石油”的有机质特征
Table 2. Characteristics of organic matter of hydrothermal petroleum in different regions
样品号及产状 w(TOC)/% 抽提物wB/% 碳数范围 主碳峰 CPI Pr/Ph 冲 D360-5-8块状硫化物矿石[6] 0.58 0.007 0 15~33 nC22 1.40 0.68 绳 D411-2硫化物烟囱[6] 0.45 0.003 1 16~35 nC22,nC29 1.40 0.47 海 D412-4硫化物烟囱[6] 1.10 0.003 6 16~35 nC18 1.60 0.72 槽 160P网脉状硫化物矿石[6] 0.41 0.016 4 15~35 nC19 1.50 0.75 Guaymas盆地[11] 2.00 26.000 0 13~35 nC21 1.03 1.10 Escanaba海槽[12] 0.40 46.000 0 14~40 nC27 1.25 1.70 红海海槽Atlantis-Ⅱ号[12] 0.14 0.023 0 15~40 nC24 1.10 0.80 东太平洋洋脊13°N[11] 0.40 0.001 0 15~34 nC29 1.10 1.20 东太平洋洋脊21°N[11] 0.000 2 14~45 nC27 0.9~1.03 0.5~1.0 表 3 不同地区热液衍生石油的14C年龄及δ13C数据
Table 3. Data of 14C age and δ13C of hydrothermal petroleum in different regions
位置 样品 特征 14C年龄 δ13C/‰ Guaymas盆地南海槽[12, 24] 1168-2 取自排出的小于50℃的热液流体垢泥萃取的全油萃取物 (4 295±370)a -26.4 1173-8 取自不活动的倒置球头钉状尖丘的全油萃取物 (4 583±265)a -21.7 1177-2D 取自大型活动的含100℃流体堤坝的全油萃取物 (5 705±300)a -22.5 1630 取自排出206℃流体的尖丘的游离油 (4 420±185)a -21.3 1630 取自样品上面岩石的全油萃取物 (4 870±190)a -22.3 Guaymas盆地北海槽[12, 24] 1623-B 取自风化泥岩中岩脉的全油萃取物 (7 430±70)a Escanaba海槽[12, 24] 32D-2 取自具硫化物和沥青质石油互层的打捞砂岩的全油萃取物 (17 090±110)a 米德尔裂谷[12, 24] MV2255-3-2 取自重晶石喷出口的全油萃取物 (29 000+4 400)a, (29 000- 2100)a 东非大裂谷[12, 24] E99902 卡兰巴海角滨岸处的坦噶尼喀地堑北部突岩 (25 060±1 650)a 鄂尔多斯盆地YK1井[25] YK-63 三叠系延长组长72黑色页岩 140~100 Ma -28.0 鄂尔多斯盆地YK1井[25] YK-78 三叠系延长组长73黑色页岩 140~100 Ma -29.3 塔里木盆地拜城坳陷[26] 人工1井 三叠系-侏罗系源岩 65~24 Ma <-25 -
[1] Lein A Y, Peresypkin V I, Simoneit B. Origin of hydrocarbons in hydrothermal sulfide ores in the Mid-Atlantic Ridge[J]. Lithology and Mineral Resources, 2003, 38(5): 383-393. doi: 10.1023/A:1025525818526 [2] 张景廉, 王先斌, 曹正林, 等. 热液烃的生成和深部油气藏[J]. 地球科学进展, 2000, 15(5): 545-552. doi: 10.3321/j.issn:1001-8166.2000.05.010 [3] Gold T, Soter S. The deep-earth gas hypothesis[J]. Scientific American, 1980, 242(6): 154-161. doi: 10.1038/scientificamerican0680-154 [4] 曾志刚. 海底热液地质学[M]. 北京: 科学出版社, 2011: 80-98. [5] Simoneit B R T, Lonsdate P F. Hydrothermal petroleum in mineralized mounds at the seabed of Guaymas Basin[J]. Nature, 1982, 295: 198-202. doi: 10.1038/295198a0 [6] 侯增谦. 现代与古代海底热水成矿作用[M]. 北京: 地质出版社, 2003: 202-254. [7] Charlou J L, Donval J P. Fouguet Y. Geochemistry of high H2 and CH4 vent fluids issuing from ultramafic rocks at the Rain-bow hydrothermal field(36°14'N, MAR)[J]. Chemical Geology, 2002, 191(4): 345-359. http://www.sciencedirect.com/science/article/pii/S0009254102001341 [8] Simoneit B R T, Mazurek M, Brenner S, et al. Organic geochemistry of recent sediments from Guaymas Basin[J]. Gulf of California Deep Sea Res., 1979, 26A: 879-891. http://www.sciencedirect.com/science/article/pii/019801497990102X [9] Kvenvolden K A, Rapp J B, Hostettler F D, et al. Petroleum associated with polymetallic sulfide in sediment from Gorda Ridge[J]. Science, 1986, 234: 1231-1234. doi: 10.1126/science.234.4781.1231 [10] Yamanaka T, Ishibashi J, Hashimoto J. Organic geochemistry of hydrothermal petroleum generated in the submarine Wakamiko Caldera, southern Kyushu Japan[J]. Organic Geochemistry, 2000, 31: 1117-1132. doi: 10.1016/S0146-6380(00)00119-4 [11] Simoneit B R T. Petroleum generation in submarine hydrothermal system: An update[J]. The Canadian Mineralogist, 1988, 26: 826-840. http://www.researchgate.net/publication/237538976_Petroleum_generation_in_submarine_hydrothermal_systems_an_update/download [12] Simoneit B R T. Alteration and migration process of organicmatter in hydrothermal systems and implications for metallogenesis[C]//Glikson M, Mastalerz M. Organic matter and mineralisation. [S. l. ]: Kluwer Academic Publishers, 2000: 13-17. [13] McCollom T M, Seewald J S. Abiotic synthesis of organic compounds in deep-sea hydrothermal environments[J]. Chem. Rev., 2007, 107: 382-401. doi: 10.1021/cr0503660 [14] Kelley D S, Karston J A, Früh-Green G L, et al. A serpentinite-hosted ecosystem: The Lost City hydrothermal field[J]. Science, 2005, 307: 1428-1434. doi: 10.1126/science.1102556 [15] Peter J M, Simoneit B R T, Kawa O E, et al. Liquid hydrocarbon bearing inclusions in modern hydrothermal chimneys and mounds from the Southern Trough of Guaymas Basin, Gulf of California[J]. Applied Geochemistry, 1990, 5(1/2): 51-63. http://www.sciencedirect.com/science/article/pii/0883292790900354 [16] Rushdi A I, Simoneit B R T. Hydrothermal alteration of organic matter in sediments of the Northeastern Pacific Ocean: Part1. Middle Valley, Juan de Fuca Ridge[J]. Applied Geochemistry, 2002, 17(11): 1401-1428. doi: 10.1016/S0883-2927(02)00109-9 [17] Tissot B, Welte D H. Petroleum formation and occurrence: A new approach to oil and gas exploration[M]. Berlin, Heidelberg, New York: Springer, 1984: 22-53. [18] Yamanaka T, Sakata S. Abundance and distribution of fatty acids in hydrothermal vent sediments of the western Pacific Ocean[J]. Organic Geochemistry, 2004, 35(5): 573-582. doi: 10.1016/j.orggeochem.2004.01.002 [19] Venkatesan M I, Ruth E, Rao P S, et al. Hydrothermal petroleum in the sediments of the Andaman Backarc Basin, Indian Ocean[J]. Applied Geochemistry, 2003, 18(6): 845-861. doi: 10.1016/S0883-2927(02)00180-4 [20] Brault M, Marty J C, Saliot A. Fatty acids from particulate matter and sediment in hydrothermal environments from the east Pacific rise, near 13°N[J]. Organic Geochemistry, 1984, 12(6): 217-222. http://www.sciencedirect.com/science/article/pii/0146638084900433 [21] Hedrick D B, Pledger R D, White D C, et al. In situ microbial ecology of hydrothermal vent sediments[J]. FEMS Microbiology Ecology, 1992, 101(1): 1-10. http://www.sciencedirect.com/science/article/pii/037810979290691G [22] Brault M, Simoneit B R T, Marty J C, et al. Hydrocarbons in waters and particulate material from hydrothermal environments at the East Pacific Rise, 13°N[J]. Organic Geochemistry, 1988, 12(3): 209-219. doi: 10.1016/0146-6380(88)90259-8 [23] Morgunova I P, Ivabov V N, Litvinenko I V, et al. Geochemistry of organic matter in bottom sediments of the Ashadze hydrothermal field[J]. Oceanology, 2012, 52(3): 345-353. doi: 10.1134/S0001437012030083 [24] Peter J M, Peltonen P, Scott S D, et al. 14C ages of hydrothermal petroleum and carbonate in Guaymas Basin, Gulf of California: Implications for oil generation, expulsion, and migration[J]. Geology, 1991, 19: 253-256. doi: 10.1130/0091-7613(1991)019<0253:CAOHPA>2.3.CO;2 [25] 杨亚南, 周世新, 李靖, 等. 鄂尔多斯盆地南缘延长组烃源岩地球化学特征及油源对比[J]. 天然气地球科学, 2017, 28(4): 550-565. https://www.cnki.com.cn/Article/CJFDTOTAL-TDKX201704009.htm [26] 万桂梅, 汤良杰, 金文正, 等. 库车坳陷西部构造圈闭形成期与烃源岩生烃期匹配关系探讨[J]. 地质学报, 2007, 81(2): 187-196. https://www.cnki.com.cn/Article/CJFDTOTAL-DZXE200702007.htm [27] 尤继元, 周鼎武, 朱晓辉. 热液喷口生物体对成矿作用的影响[J]. 地学前缘, 2011, 18(5): 320-330. https://www.cnki.com.cn/Article/CJFDTOTAL-DXQY201105030.htm [28] Bischoff J L, Rosenbauer R J. The critical point and two-phase boundary of sea water 200-500℃[J]. Earth Planet. Sci. Lett., 1984, 68: 172-180. doi: 10.1016/0012-821X(84)90149-3 [29] 吴世迎. 马里亚纳海槽海底热液烟囱物研究[M]. 北京: 海洋出版社, 1995: 1-110. [30] Hunt J M. Petroleum geochemistry and geology[M]. San Francisco: W.H. Freman and Company, 1979: 326-337. [31] Clifton C G, Walters C C, Simoneit B R T. Hydrothermal petroleums from Yellowstone National Park, Wyoming, USA[J]. Applied Geochemistry, 1990, 5(1/2): 169-191. http://www.sciencedirect.com/science/article/pii/0883292790900479 [32] 滕吉文, 刘有山, 乔勇虎. 石油双机(有机+无机)混合成因的研究与探索[J]. 地球物理学报, 2017, 60(5): 1874-1892. https://www.cnki.com.cn/Article/CJFDTOTAL-DQWX201705022.htm [33] Borgonie G, Garcia-Moyano A, Litthauer D, et al. Nematoda from the terrestrial deep subsurface of South Africa[J]. Nature, 2011, 474: 79-82. doi: 10.1038/nature09974 [34] Borgonie G, Linage-Alvarez B, Ojo A O, et al. Eukaryotic opportunists dominate the deep-subsurface biosphere in South Africa[J]. Nature Communications, 2015, 6: 89-92. http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4673884/ [35] Kristin A E, Toby K, Pelle O, et al. Build your own soil: Exploring microfluidics to create microbial habitat structures[J]. The ISME Journal, 2018, 12(2): 312-319. doi: 10.1038/ismej.2017.184 [36] Jeffrey S M, Greg W, Yuri A G, et al. Quantification of electron transfer rates to a solid phase electron acceptor through the stages of biofilm formation from single cells to multicellular communities[J]. Environmental Science & Technology, 2010, 44(7): 2721-2727. [37] Christine M E, Manuela P, Julian T, et al. Schmitz, archaea are interactive components of complex microbiomes[J]. Trends in Microbiology, 2017, 26(1): 70-85. http://www.sciencedirect.com/science/article/pii/S0966842X17301749 [38] You J Y, Liu Y Q, Zhou D W, et al. Activity of hydrothermal fluid at the bottom of a lake and its influence on the development of high-quality source rocks: Triassic Yanchang Formation, southern Ordos Basin, China[J]. Australian Journal of Earth Sciences, 2019, 67(1): 115-128. doi: 10.1080/08120099.2019.1612783 [39] You Jiyuan, Liu Yiqun, Li Yijun, et al. Influencing factor of Chang 7 oil shale of Triassic Yanchang Formation in Ordos Basin: Constraint from hvdothermal fluid[J/OL]. Journal of Petroleum Science and Engineering, 2020, 70(1): 102-114. doi: org/10.1016/j.petrol.2021.108532. [40] 柳益群, 焦鑫, 李红, 等. 新疆三塘湖跃进沟二叠系地幔热液喷流型原生白云岩[J]. 中国科学: 地球科学, 2011, 41(12): 1862-1871. https://www.cnki.com.cn/Article/CJFDTOTAL-JDXK201112015.htm [41] 柳益群, 周鼎武, 焦鑫, 等. 一类新型沉积岩: 地幔热液喷积岩: 以中国新疆三塘湖地区为例[J]. 沉积学报, 2013, 31(5): 773-781. https://www.cnki.com.cn/Article/CJFDTOTAL-CJXB201305004.htm [42] 陈军, 杨瑞东, 高军波, 等. 贵州热水沉积矿床[J]. 地质科技情报, 2014, 33(5): 113-120. https://www.cnki.com.cn/Article/CJFDTOTAL-DZKQ201405016.htm [43] 邱祥亮, 陈小东, 丁黎, 等. 姬塬地区长81油层组砂体结构特征及对油藏的控制作用[J]. 地质科技通报, 2020, 39(5): 87-96. http://dzkjqb.cug.edu.cn/CN/abstract/abstract10054.shtml [44] 赵岩, 刘池阳. 火山活动对烃源岩形成与演化的影响[J]. 地质科技情报, 2016, 35(6): 78-82. https://www.cnki.com.cn/Article/CJFDTOTAL-DZKQ201606012.htm [45] 赵会涛, 郭英海, 杜小伟, 等. 鄂尔多斯盆地高桥地区本溪组砂岩储层微观孔隙多重分形特征[J]. 地质科技通报, 2020, 39(6): 175-184. http://dzkjqb.cug.edu.cn/CN/abstract/abstract10083.shtml [46] You J Y, Liu Y Q, Li Y X, et al. Discovery and significance of ancient cod fossils in hydrothermal fluid deposition areas: A case study of Chang 7-3 from the Triassic Yanchang Formation in the Ordos Basin[J/OL]. Historical Biology, 2020, 11(2): 2-14. doi: 10.1080/08912963.2020.1769091 [47] You J Y, Liu Y Q, Zhang X L, et al. Establishment and significance of ancient lake ecosystems in the Mesozoic-Evidence from coprolite from the Chang 7 section of the Upper Triassic in the Ordos Basin, China[J/OL]. Historical Biology, 2020, 11(9): 35-44. doi: org/10.1080/08912963.2020.184064. [48] You J Y, Liu Y Q, Zhou D W, et al. Characteristics and controlling factors of LORS from the Chang 7-3 section of the Triassic Yanchang Formation in the Ordos Basin[J/OL]. Journal of Petroleum Science and Engineering, 2020, 11(10): 112-125. doi: org/10.1016/j.petrol.2020.108020. [49] 张文正, 杨华, 解丽琴, 等. 湖底热水活动及其对优质烃源岩发育的影响: 以鄂尔多斯盆地长7烃源岩为例[J]. 石油勘探与开发, 2010, 37(4): 425-429. https://www.cnki.com.cn/Article/CJFDTOTAL-SKYK201004006.htm [50] 尤继元. 鄂尔多斯盆地南缘三叠系延长组长7喷积岩特征及其与烃源岩关系研究[D]. 西安: 西北大学, 2020: 130-159. [51] 靳梦琪. 新疆博格达山北缘二叠系芦草沟组碳酸质喷爆岩初步研究[D]. 西安: 西北大学, 2015: 34-51.