Intelligent data acquisition and visualization technology of field geology based on mobile devices
-
摘要: 野外地质数据来源繁多、类型繁杂、数量巨大,但数据采集手段数字化程度不高、效率低,导致野外地质数据采集成为地学大数据获取的一个瓶颈。基于移动智能手机、平板电脑等移动设备的野外地质数据采集是一个趋势。基于移动设备的野外地质大数据智能采集技术,采用搭载Android系统的移动设备,利用传感器辅助编录、语音识别辅助编录、可定制字典辅助编录、界面自定义、相关联数据辅助编录等手段辅助野外数据快捷及智能化采集工作,并在野外利用采集的数据直接在Android设备上进行地质图件的绘制,实现数据的现场制图及可视化表达。重点针对野外钻孔数据在该系统上进行了数据采集测试和地质编录本的绘制,结果表明利用本方法,能够提高数据采集的工作效率和质量,并可以在现场直接进行地质图件的绘制。Abstract: There are many sources, complicated types and huge quantity of field geological data, but the low digitization degree of data acquisition method and poor efficiency lead to the bottleneck of field geological data acquisition by big data. Field geological data acquisition based on mobile smartphones, tablets and other mobile devices is a trend. This paper studies the intelligent acquisition technology of field geological big data based on mobile devices. This technology adopts the mobile device with Android system, uses such methods as sensor-assisted cataloging, speech recognition-assisted cataloging, customizable dictionary-assisted editing, interface customization and associated data auxiliary cataloging, to assist the field data fast and intelligent collection work. In the field, this technology also can use the collected data on the Android to directly draw the geological map, and make the data visual on-site. Using the field drilling data, the study tested functions of data collection and geological catalog drawing. The results show that the method proposed in this paper can improve the efficiency and quality of data collection, and can directly draw geological map in the field.
-
Key words:
- big data /
- Android system /
- data acquisition /
- visualization
-
表 1 本地字典示例
Table 1. Local data dictionary example
中文 拼音 石英 shi ying 蚀变 shi bian 闪长岩 shan chang yan 片岩 pian yan 花岗岩 hua gang yan 大理岩 da li yan 砂岩 sha yan -
[1] 吴冲龙, 刘刚, 田宜平, 等.论地质信息科学[J].地质科技情报, 2005, 24(3):1-8. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=dzkjqb200503001 [2] 陈国旭, 田宜平, 张夏林, 等.基于勘探剖面的三维地质模型快速构建及不确定性分析[J].地质科技情报, 2019, 38(2):275-280. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=dzkjqb201902033 [3] 张文彪, 段太忠, 刘彦锋, 等.定量地质建模技术应用现状与发展趋势[J].地质科技情报, 2019, 38(3):1-9. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=dzkjqb201903029 [4] 姜作勤, 李友枝.野外地质数据采集信息化的现状与特点[J].中国地质, 2001, 28(6):1-5. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=zgdizhi200106001 [5] 谭永杰, 文敏, 朱月琴, 等.地质数据的大数据特性研究[J].中国矿业, 2017, 26(9):70-74, 87. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=zgky201709014 [6] 吴冲龙, 刘刚, 王力哲, 等.基于大数据的城市地质环境智能监管思路与方法[J].地质科技通报, 2020, 39(1):157-163. http://dzkjqb.cug.edu.cn/CN/abstract/abstract9936.shtml [7] Pavlis T L, Langford R, Hurtado J, et al.Computer-based data acquisition and visualization systems in field geology:Results from 12 years of experimentation and future potential[J].Geosphere, 2010, 6(3):275-294. doi: 10.1130/GES00503.S2 [8] 刘刚, 吴冲龙, 汪新庆.计算机辅助区域地质调查野外工作系统研究进展[J].地球科学进展, 2003, 18(1):77-84. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=dqkxjz200301011 [9] 李超岭, 于庆文, 杨东来, 等.PRB数字地质填图技术研究[J].地球科学:中国地质大学学报, 2003, 28(4):377-383. http://d.wanfangdata.com.cn/Periodical/dqkx200304003 [10] Weng Y H, Sun F S, Grigsby J D.GeoTools:An android phone application in geology[J].Computers & Geosciences, 2012, 44:24-30. http://adsabs.harvard.edu/cgi-bin/nph-data_query?bibcode=2012CG.....44...24W&db_key=PHY&link_type=ABSTRACT [11] 傅成铭, 张明林, 文占久, 等.大数据时代铀矿勘查数字化和发展方向探讨[J].铀矿地质, 2018, 34(6):61-66. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=ykdz201806009 [12] 李超岭, 李健强, 张宏春, 等.智能地质调查大数据应用体系架构与关键技术[J].地质通报, 2015, 34(7):1288-1299. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=zgqydz201507006 [13] 吴冲龙, 刘刚, 田宜平, 等.地质信息科学与技术概论[M].北京:科学出版社, 2014. [14] 刘刚, 吴冲龙, 何珍文, 等.面向地质时空大数据表达与存储管理的数据模型研究[J].地质科技通报, 2020, 39(1):157-163. http://dzkjqb.cug.edu.cn/CN/abstract/abstract9937.shtml [15] Besacier L, Barnard E, Karpov A, et al.Automatic speech recognition for under-resourced languages:A survey[J].Speech Communication, 2014, 56:85-100. doi: 10.1016/j.specom.2013.07.008 [16] Agarwalla S, Sarma K K.Machine learning based sample extraction for automatic speech recognition using dialectal Assamese speech[J].Neural Networks, 2016, 78:97-111. doi: 10.1016/j.neunet.2015.12.010 [17] 王鑫.基于Android平台获取地质数据的关键技术研究[D].武汉: 湖北大学, 2016. [18] 田宜平, 刘维安, 张夏林.基于等角度变比例投影的矿体轮廓线自动匹配方法研究[J].地质科技通报, 2020, 39(1):175-180. http://dzkjqb.cug.edu.cn/CN/abstract/abstract9938.shtml