Key technologies of geological big data visualization
-
摘要: 详述了地质大数据可视化的研究内容,从应用角度可将其分为:表达三维可视化、分析三维可视化、过程三维可视化、设计三维可视化和决策三维可视化5类。针对地质大数据这5类可视化中涉及到的几方面关键技术进行了深入探讨,包括:地质体三维可视化动态精细建模技术;基于CUDA+GPU集群的地质体属性场数据并行可视化技术;针对地质大数据的可视化分析技术;基于地质大数据的虚拟现实和增强现实技术等。对这几方面关键技术的现状、技术路线以及实现效果进行了论述和展示。Abstract: This paper describes in detail the research contents of visualization of geological big data. Its application classification includes expression visualization, analysis visualization, procedure visualization, design visualization and decision visualization. The paper also discusses in length several key technologies involved in the five types of visualization of geological big data: 3D visualization dynamic fine modeling technology of geological body; Parallel visualization technology of geological body attribute field data based on CUDA+GPU cluster; Visualization analysis technology for geological big data; Virtual reality and augmented reality technology based on geological big data. The status quo, technical route and implementation effect of these key technologies are discussed and demonstrated.
-
Key words:
- geological big data /
- visualization /
- CUDA /
- GPU /
- geological body modeling /
- virtual reality /
- augmented reality
-
图 3 全息、精细、多尺度三维地质体建模[18]
Figure 3. Full detail, fine and multi-scale 3D geological body modeling
-
[1] 赵鹏大.大数据时代呼唤各科学领域的数据科学[J].中国科技奖励, 2014, 183:29-30. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=zgkjjl201409007 [2] 郭华东, 王力哲, 陈方, 等.科学大数据与数字地球[J].科学通报, 2014, 59(12):1047-1054. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=kxtb201412001 [3] 吴冲龙, 刘刚, 张夏林, 等.地质科学大数据及其利用的若干问题探讨[J].科学通报, 2016, 61(16):1797-1807. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=kxtb201616010 [4] 刘刚, 吴冲龙, 何珍文, 等.面向地质时空大数据表达与存储管理的数据模型研究[J].地质科技通报, 2020, 39(1):164-174. http://dzkjqb.cug.edu.cn/CN/abstract/abstract9937.shtml [5] 吴冲龙, 刘刚, 王力哲, 等.基于大数据的城市地质环境智能监管思路与方法[J].地质科技通报, 2020, 39(1):157-163. http://dzkjqb.cug.edu.cn/CN/abstract/abstract9936.shtml [6] Wang Chengbin, Ma Xiaogang, Chen Jianguo.Ontology-driven data integration and visualization for exploring regional geologic time and paleontological information[J].Computers and Geosciences, 2018, 115:12-19. doi: 10.1016/j.cageo.2018.03.004 [7] Carl B, Andrew W.3D data visualization:The advantages of volume graphics and big data to support geologic interpretation[J].Journal of Subsurface Characterization, 2015, 3(3):29-30. http://www.researchgate.net/publication/281161616_3D_data_visualization_The_advantages_of_volume_graphics_and_big_data_to_support_geologic_interpretation [8] Mueller R D, Qin Xiaodong, Sandwell D T, et al.The GPlates portal:Cloud-based interactive 3D visualization of global geophysical and geological data in a web browser[J].Plos One, 2016, 11(3):1-17. http://europepmc.org/articles/PMC4784813/ [9] Gazcon N F, Trippel N J M, Bjerg E A, et al.Fieldwork in geosciences assisted by ARGeo:A mobile augmented reality system[J].Computers and Geosciences, 2018, 121:30-38. doi: 10.1016/j.cageo.2018.09.004 [10] 吴冲龙, 翁正平, 刘刚, 等.论中国"玻璃国土"建设[J].地质科技情报, 2012, 31(6):1-8. http://www.cqvip.com/QK/93477A/20126/44012100.html [11] 吴冲龙, 何珍文, 翁正平, 等.地质数据三维可视化属性、分类和关键技术[J].地质通报, 2011, 30(5):642-649. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=zgqydz201105003 [12] 田宜平, 袁艳斌, 李绍虎, 等.建立盆地三维构造-地层格架的插值方法[J].地球科学:中国地质大学学报, 2000, 25(2):191-194. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=dqkx200002015 [13] 屈红刚, 潘懋, 王勇, 等.基于含拓扑剖面的三维地质建模[J].北京大学学报:自然科学版, 2006, 42(6):717-722. http://www.cnki.com.cn/Article/CJFDTotal-BJDZ200606005.htm [14] Chen Qiyu, Mariethoz G, Liu Gang, et al.Locality-based 3-D multiple-point statistics reconstruction using 2-D geological cross sections[J].Hydrology and Earth System Science, 2018, 22:6547-6566. doi: 10.5194/hess-22-6547-2018 [15] 陈国旭, 田宜平, 张夏林, 等.基于勘探剖面的三维地质模型快速构建及不确定性分析[J].地质科技情报, 2019, 38(2):275-280. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=dzkjqb201902033 [16] 张文彪, 段太忠, 刘彦锋, 等.定量地质建模技术应用现状与发展趋势[J].地质科技情报, 2019, 38(3):1-9. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=dzkjqb201903029 [17] 田宜平, 刘维安, 张夏林.基于等角度变比例投影的矿体轮廓线自动匹配方法研究[J].地质科技通报, 2020, 39(1):175-180. http://dzkjqb.cug.edu.cn/CN/abstract/abstract9938.shtml [18] 陈麒玉.基于多点地质统计学的三维地质体随机建模方法研究[D].武汉: 中国地质大学(武汉), 2018. [19] Yuan X R, Chen B Q.Illustrating surfaces in volume[J].VisSym, 2004, 337:9-16. http://www.freepatentsonline.com/6813373.html [20] 华岗.地震体数据可视化与分析研究[D].杭州: 浙江大学, 2011. [21] 丁冶宇.多变量空间数据场的高效可视化[D].杭州: 浙江大学, 2014. [22] 孔明明.基于GPU集群的并行体绘制[D].杭州: 浙江大学, 2007. [23] 赵利平.基于GPU大规模数据体绘制方法研究与实现[D].长沙: 湖南大学, 2009. [24] 江鹏.基于变换编码的压缩体绘制[D].杭州: 浙江大学, 2008. [25] 国栋, 程乾生, 孙喜晨.具有剪切的矢量压缩立体绘制算法[J].计算机辅助设计与图形学学报, 2001, 13(6):532-536. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=jsjfzsjytxxxb200106011 [26] 冀俊峰, 李胜, 刘学慧, 等.基于参数空间的混合多分辨率绘制[J].软件学报, 2005, 15(10):1515-1521. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=rjxb200410011 [27] 罗月童, 薛晔, 刘晓平.基于GPU的多分辨率体数据重构和渲染[J].计算机辅助设计与图形学学报, 2009, 21(1):107-111. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=jsjfzsjytxxxb200901017 [28] 蔡勋, 王攀, 曾亮.基于元单元的Out-of-Core等值面绘制算法[J].系统仿真学报, 2011, 23(6):117-118. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=xtfzxb201106024 [29] 王篆.基于Out-of-Core的海量数据等值面绘制技术研究与实现[D].长沙: 国防科技大学, 2011. [30] 殷萍.Terrain-VDR: 基于Out-of-Core的交互式地形并行绘制框架[D].杭州: 浙江大学, 2006. [31] 王森.基于GPU集群的大规模颗粒流输运模拟可视化系统的研究[D].兰州: 兰州大学, 2017. [32] Cowgill E, Bernardin T S, Oskin M E, et al.Interactive terrain visualization enables virtual field work during rapid scientific response to the 2010 Haiti earthquake[J].Geosphere, 2012, 8(4):1-18. http://www.researchgate.net/publication/278101600_Interactive_terrain_visualization_enables_virtual_field_work_during_rapid_scientific_response_to_the_2010_Haiti_earthquake [33] 郭艳军, 张进江, 陈斌, 等.基于VR技术的多尺度地质数据3D沉浸式可视化与交互方法[J].地学前缘, 2019, 26(4):146-158. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=dxqy201904017