留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

碳酸盐岩裂缝研究进展及发展趋势

李长海 赵伦 刘波 李建新 陈烨菲 张宇

李长海, 赵伦, 刘波, 李建新, 陈烨菲, 张宇. 碳酸盐岩裂缝研究进展及发展趋势[J]. 地质科技通报, 2021, 40(4): 31-48. doi: 10.19509/j.cnki.dzkq.2021.0403
引用本文: 李长海, 赵伦, 刘波, 李建新, 陈烨菲, 张宇. 碳酸盐岩裂缝研究进展及发展趋势[J]. 地质科技通报, 2021, 40(4): 31-48. doi: 10.19509/j.cnki.dzkq.2021.0403
Li Changhai, Zhao Lun, Liu Bo, Li Jianxin, Chen Yefei, Zhang Yu. Research status and development trend of fractures in carbonate reservoir[J]. Bulletin of Geological Science and Technology, 2021, 40(4): 31-48. doi: 10.19509/j.cnki.dzkq.2021.0403
Citation: Li Changhai, Zhao Lun, Liu Bo, Li Jianxin, Chen Yefei, Zhang Yu. Research status and development trend of fractures in carbonate reservoir[J]. Bulletin of Geological Science and Technology, 2021, 40(4): 31-48. doi: 10.19509/j.cnki.dzkq.2021.0403

碳酸盐岩裂缝研究进展及发展趋势

doi: 10.19509/j.cnki.dzkq.2021.0403
基金项目: 

国家科技重大专项 2017ZX05030-002

国家科技重大专项 2017ZX05005-003-005

国家自然科学基金集成项目 U19B6003

详细信息
    作者简介:

    李长海(1992-), 男, 现正攻读石油地质学专业博士学位, 主要从事油气田开发地质及裂缝表征方面的研究工作。E-mail: lch2017@pku.edu.cn

    通讯作者:

    刘波(1965-), 男, 研究员, 主要从事盆地构造-沉积演化、储层沉积学、层序地层学、碳酸盐岩沉积-成岩作用研究工作。E-mail: bobliu@pku.edu.cn

  • 中图分类号: P588.24

Research status and development trend of fractures in carbonate reservoir

  • 摘要: 裂缝对碳酸盐岩储层油气产能有重要的影响。在总结碳酸盐岩裂缝的分类、成因、主控因素、识别与预测等方面的基础上,认为对非构造缝的分类、命名及其含义仍存在较大争议。裂缝成因主要包括构造作用、成岩作用、异常高压作用、剥蚀作用和风化作用。粒度和孔隙度对构造缝发育的影响机理有待进一步深入研究。沉积相对构造缝发育有一定的影响,但同一沉积相内岩性组成复杂,难以准确揭示裂缝发育的影响机理。直接研究岩性对裂缝发育影响更利于揭示裂缝形成机理。基于成岩演化序列对裂缝进行研究可明确裂缝形成时的岩石特征,为深入讨论构造缝发育的主控因素提供了基础。层间缝、缝合线、异常高压缝和溶蚀缝等非构造缝发育的主控因素有待进一步深入研究。近几年地震技术识别裂缝突破不大,非常规测井识别裂缝领域以声波远探测技术发展最快。常规测井识别裂缝一直是研究的热点问题,不同学者提出了40余种裂缝识别方法。测井、地震信息裂缝预测法预测结果可靠性高,是目前主流的裂缝预测技术。规范裂缝分类、梳理裂缝成因、深化构造缝发育机理研究、加强非构造缝主控因素探讨、提高常规测井裂缝识别率、综合现有不同裂缝预测技术预测裂缝是下一步裂缝研究的重要发展方向。

     

  • 图 1  不同成因裂缝

    a.构造缝[19];b.卸载裂缝[21];c.风化裂缝[19];d.脱水收缩裂缝[22];e.干燥裂缝[23];f.矿物相变裂缝[24];g.粒裂纹[25];h.溶蚀缝[26];i.北特鲁瓦油田缝合线;j.北特鲁瓦油田层间缝;k.差异压实裂缝[27]

    Figure 1.  Fractures of different origin

    图 2  裂缝网络表征体系图(据文献[132]修改)

    Figure 2.  Diagram for fracture characterization

    表  1  根据成因的裂缝分类方案

    Table  1.   Classification of fractures according to genesis

    类别 特征
    构造缝 区域构造裂缝 大面积分布,延伸方向和形态稳定,裂缝互不错位。一般产状稳定、倾角较大,常垂直或近垂直于岩层层面
    局部构造裂缝 有一定的方向性和分布规律,穿层,多组系
    非构造缝 表生裂缝 卸载裂缝 通常形状不规则,呈叠状或尖头状,与新形成的自由表面破裂相平行,其发育与地形有关
    风化裂缝 呈叶脉状或马尾状,出现在岩层表面
    成岩缝 收缩裂缝 干燥裂缝 亦称泥裂,发育在岩层表面。裂缝大部分连接成网状,形态平滑,边缘有轻微翘起现象。次级裂缝不发育
    脱水收缩裂缝 一般呈网状,将岩石分割成若干个小的棱角状团块,或形成沿着颗粒边缘的粒缘缝,其延伸长度往往不超过一个颗粒粒径
    矿物相变裂缝 通常形成一系列具有不规则几何形状的扩张或拉张缝,在扫描电镜下可见矿物晶簇的长轴平行于裂缝
    压裂缝 一般都很微小,只有在显微镜下才可看见
    层间缝 沿岩石的层理或者面理产生的破裂,与层面平行
    溶蚀缝 破裂面呈不规则溶蚀扩大,缝壁凹凸不平,缝宽大小不一,其发育程度受岩性,水介质等条件控制,形状奇特,可呈漏斗状、树枝状、蛇曲状等
    缝合线 呈齿状镶嵌,起伏波动明显,产状变化大,多被暗色泥质充填,有部分已转变为泥质条带
    差异压实裂缝 不成组系分布,延伸不远,密度、宽度变化大。在地形起伏大,坡度陡的岩层中裂缝的密度及范围大
    异常高压缝 走向弯曲、开度不一,呈裂缝脉群,均为张裂缝,产生后大部分被方解石、白云石等脉体充填,其有效性很低,含油性差,几乎不含油
    下载: 导出CSV

    表  2  不同类型裂缝的成因

    Table  2.   Genesis of different types of fractures

    裂缝类型 裂缝成因 主控作用 发育频率 与油气富集的关系 代表性油气藏
    构造缝 区域构造裂缝 在区域构造应力场的直接控制作用下形成的裂缝。其发育范围广泛,且成因与局部构造无关 构造作用 对油气富集有重要影响 塔里木盆地巴楚隆起鹰山组[28]
    局部构造裂缝 一般是指在局部构造应力场的控制作用下形成的或与局部构造事件(褶皱和断层等)相伴而生成的裂缝 褶皱作用和断裂作用 对油气富集有重要影响 川西彭州地区雷口坡组[16]
    非构造缝 表生裂缝 卸载裂缝 卸载裂缝是在一个方向上卸载或限制释放所形成的裂缝 剥蚀作用 对油气富集贡献不大 塔北地区奥陶系地层[22]
    风化裂缝 各种机械和化学风化作用以及与块体塌移有关的作用下形成的一种裂缝 风化作用 对油气富集贡献不大 塔北地区奥陶系地层[22]
    成岩缝 收缩裂缝 干燥裂缝 暴露于地表的沉积物失水而形成, 主要是张力裂缝。通常称之为泥裂 脱水收缩作用 对油气富集贡献不大
    脱水收缩裂缝 成岩过程中黏土在水下或地下失水而造成沉积物总体积的减少, 相伴生的拉张或扩张作用而形成的裂缝 脱水收缩作用 对油气富集贡献不大
    矿物相变裂缝 岩石中因矿物相变引起的岩石体积减少而形成的裂缝 脱水收缩作用 对油气富集贡献不大
    压裂缝 随埋深的增加, 上覆岩石的负载增大, 导致沉积物中一些脆性颗粒破碎形成的微张裂缝 压实作用 对油气富集贡献不大 中亚让那诺尔油田[25]
    层间缝 沉积的层面或层理提供了力学薄弱点,并在经受外力时沿层理或层面产生的破裂 构造作用 对油气富集贡献不大 中亚北特鲁瓦油田[29]
    溶蚀缝 由于溶蚀作用改造而形成的裂缝 溶解作用 对油气富集有重要影响 塔北地区奥陶系地层[22]
    缝合线 在上覆沉积物负荷作用下, 由于压力和孔隙流体的作用, 在应力点上矿物颗粒发生选择性溶解 压溶作用 对油气富集有一定影响 塔北地区奥陶系地层[22]
    差异压实裂缝 当上覆沉积物厚度不均或地形的起伏较大时, 沉积物因差异压实作用在起伏的地形周围产生相对位移而形成的裂缝 压实作用 对油气富集贡献不大
    异常高压缝 在一个封闭的环境中, 当流体的压力大于岩石抗张强度, 从而迫使流体沿岩性薄弱带或微裂缝向外排移, 以释放多余的压力而形成的裂缝 异常高压作用 对油气富集有重要影响 中亚肯基亚克油田[30]
    下载: 导出CSV

    表  3  不同裂缝主控因素对比

    Table  3.   Comparison of controlling factors of different fractures

    裂缝类型 代表学者 主控因素
    构造缝 Nelson[7] 岩石组成、孔隙度、颗粒大小、地层厚度和构造位置
    Lavenu等[67] 沉积相、成岩演化
    层间缝 Changhai Li等[29] 构造位置、岩石组成和岩石结构、距离断层距离和岩层厚度
    缝合线 Peacock等[68] 构造位置、岩石组成、粒度和岩石密度
    异常高压缝 李南等[69] 充足的流体、形成地层流体压力异常的环境和流体压力超过地层破裂压力
    溶蚀缝 表生溶蚀缝 钱一雄等[70] 古构造、断裂系统、海平面和古气候
    埋藏溶蚀缝 断裂和流体
    下载: 导出CSV

    表  4  常规测井裂缝响应特征

    Table  4.   Responses of conventional logging for fractures

    测井系列 高角度缝 低角度缝 网状缝
    深浅双侧向测井 正差异,裂缝电导率与张开程度成正比关系,张开程度变大,高角度缝的深、浅侧向电阻率差值也变大 负差异,电阻率值变低,井曲线呈尖锐状,深浅双向测井值一般重合或负差异 双侧向测井在高电阻率背景上降低均比较明显,有一定厚度,但并非和低角度缝一样所表现的尖刺状特征
    补偿声波测井 不明显 跳波,跳波强度与裂缝张开度及线密度呈正相关
    补偿中子 张开缝或未完全充填时,有所反应但不明显 增大 增大
    密度测井 无显示响应 明显,充填缝较致密围岩有所降低;张开缝密度低异常 低异常
    自然伽马 衰减幅度大 影响小 不同程度衰减
    自然电位 影响小 衰减幅度大 不同程度衰减
    井径 扩径或缩径 扩径或缩径
    下载: 导出CSV

    表  5  常规测井裂缝识别方法

    Table  5.   Summary of fracture identification methods by using conventional logging

    孔隙结构指数[109] 地层因素比值[109] 饱和度比值[109] 骨架指数法[109]
    渗透率差异法[110] 地层双轴各向异性法[111] 裂缝流体因子法[112] 等效弹性模量差比法[109]
    岩石稳定系数[109] 龟裂系数法[113] 双井径差值[109] 井径相对异常[109]
    电阻率校正差比法[114] 微电极电阻率差比[109] 电阻率指示法[115] 深侧向电阻率数值反演法[116]
    声波密度裂缝孔隙度[109] 三孔隙度比值[114] 声波时差差比[109] 相对声波时差[109]
    声波横波分裂法[117] 自然电位异常[109] 相对体积密度[109] 相对中子测井值[109]
    逐步判别法[113] 综合概率密度法[118] 测井曲线变化率法[119, 120] 测井曲线重构法[121, 122]
    最大熵预测误差原理法[123] DR参数[109] DP参数[109] 基尼系数法[109]
    R/S分析法[124] 裂缝概率模型法[125] 时频分布特性法[112] 小波多尺度变换法[126]
    灰色理论预测裂缝[127] 神经网络预测裂缝[128-129] 分形维数法[130] Q聚类分析[131]
    下载: 导出CSV
  • [1] 李峰峰, 郭睿, 余义常.孔隙型碳酸盐岩储层地质建模探讨[J].科学技术与工程, 2020, 20(6):2131-2142. doi: 10.3969/j.issn.1671-1815.2020.06.004

    Li F F, Guo R, Yu Y C.Discussion on geological modeling of porous carbonate reservoirs[J].Science Technology and Engineering, 2020, 20(6):2131-2142(in Chinese with English abstract). doi: 10.3969/j.issn.1671-1815.2020.06.004
    [2] 王媛, 汪少勇, 李浩, 等.哈萨克斯坦Marsel探区下石炭统致密气资源潜力及勘探前景[J].地质科技通报, 2020, 39(6):19-29. https://dzkjqb.cug.edu.cn/CN/abstract/abstract10068.shtml

    Wang Y, Wang S Y, Li H, et al.Tight gas resource potential and prospect of the Lower Carboniferous in marsel block Kazakhastan[J].Bulletin of Geological Science and Technology, 2020, 39(6):19-29(in Chinese with English abstract). https://dzkjqb.cug.edu.cn/CN/abstract/abstract10068.shtml
    [3] 祖克威, 范凌霄, 王波, 等.四川盆地普光地区嘉陵江组二段碳酸盐岩储层裂缝发育规律[J].石油与天然气地质, 2020, 41(6):1188-1196. https://www.cnki.com.cn/Article/CJFDTOTAL-SYYT202006009.htm

    Zu K W, Fan L X, Wang B, et al.Development patterns of fractures in carbonate reservoirs in the 2nd member of Jialingjiang Formation, Puguang area, Sichuan Basin.Oil & Gas Geology, 2020, 41(6):1188-1196(in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-SYYT202006009.htm
    [4] 周铂文, 陈红汉, 云露, 等.塔里木盆地顺北地区一间房组台地碳酸盐岩异常泥质含量与断裂带距离及裂缝发育关系[J].地质科技通报, 2020, 39(6):93-102. https://dzkjqb.cug.edu.cn/CN/abstract/abstract10075.shtml

    Zhou P W, Chen H H, Yun L, et al.The relationship between abnormal argillaceous content of carbonate rocks in Yijianfang Formation platform in Shunbei area of Tarim Basin and fault zone distance and fracture development[J].Bulletin of Geological Science and Technology, 2020, 39(6):93-102(in Chinese with English abstract). https://dzkjqb.cug.edu.cn/CN/abstract/abstract10075.shtml
    [5] 罗平, 张静, 刘伟, 等.中国海相碳酸盐岩油气储层基本特征[J].地学前缘, 2008, 15(1):36-50. doi: 10.3321/j.issn:1005-2321.2008.01.004

    Luo P, Zhang J, Liu W, et al.Characteristics of marine carbonate hydrocarbon reservoirs in China[J].Earth Science Frontiers, 2008, 15(1):36-50(in Chinese with English abstract). doi: 10.3321/j.issn:1005-2321.2008.01.004
    [6] 穆龙新.储层裂缝预测研究[M].北京:石油工业出版社, 2009.

    Mu L X.Study on reservoir fracture prediction[M].Beijing:Petroleum Industry Press, 2009(in Chinese).
    [7] Nelson R.Geologic analysis of naturally fractured reservoirs[M].Houston:Gulf Publishing Company, 1985.
    [8] 周文.裂缝性油气储集层评价方法[M].成都:四川科学技术出版社, 1998.

    Zhou W.Evaluation method of fractured reservoir[M].Chengdu:Sichuan Science and Technology Press, 1998(in Chinese).
    [9] 杨宁, 吕修祥, 潘文庆.轮南潜山奥陶系碳酸盐岩储层裂缝发育特征[J].西安石油大学学报:自然科学版, 2004, 9(4):40-42. doi: 10.3969/j.issn.1673-064X.2004.04.010

    Yang N, Lu X X, Pan W Q.Feature of fracture development in Ordovician carbonate reservoir of Lunnan burial hill[J].Journal of Xi'an Shiyou University:Natural Science Edition, 2004, 9(4):40-42(in Chinese with English abstract). doi: 10.3969/j.issn.1673-064X.2004.04.010
    [10] 艾合买提江·阿不都热和曼, 钟建华, 李阳, 等.碳酸盐岩裂缝与岩溶作用研究[J].地质论评, 2008, 54(4):485-493. doi: 10.3321/j.issn:0371-5736.2008.04.007

    Aihemaitijiang A, Zhong J H, Li Y, et al.Study on effect between karstification and fracture in carbonate rocks[J].Geological Review, 2008, 54(4):485-493(in Chinese with English abstract). doi: 10.3321/j.issn:0371-5736.2008.04.007
    [11] 刘旭征, 张金功, 王永诗, 等.盆地演化过程中裂缝的形成机制及类型初步分析[J].兰州大学学报:自然科学版, 2008, 44(增刊1):28-32. https://www.cnki.com.cn/Article/CJFDTOTAL-LDZK2008S1008.htm

    Liu X Z, Zhang J G, Wang Y S, et al.Preliminary analysis of the formation and character of cracks during the tectonic evolution of sedimentary basins[J].Journal of Lanzou University:Natural Sciences Edition, 2008, 44(S1):28-32(in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-LDZK2008S1008.htm
    [12] 李阳兵, 张筠, 徐炳高, 等.川西地区须家河组裂缝成因类型及形成期次的成像测井分析[J].测井技术, 2010, 34(4):348-351. doi: 10.3969/j.issn.1004-1338.2010.04.009

    Li Y B, Zhang Y, Xu B G, et al.On the origin types and formation periods of fractures in Xujiahe Formation in West Sichuan region[J].Well Logging Technology, 2010, 34(4):348-351(in Chinese with English abstract). doi: 10.3969/j.issn.1004-1338.2010.04.009
    [13] 高计县, 唐俊伟, 张学丰, 等.塔北哈拉哈塘地区奥陶系一间房组碳酸盐岩岩心裂缝类型及期次[J].石油学报, 2012, 33(1):64-73. https://www.cnki.com.cn/Article/CJFDTOTAL-SYXB201201007.htm

    Gao J X, Tang J W, Zhang X F, et al.Types and episodes of fractures in carbonate cores from the Ordovician Yijianfang Formation in the Halahatang area, northern Tarim Basin[J].Acta Petrolei Sinica, 2012, 33(1):64-73(in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-SYXB201201007.htm
    [14] 赵军龙, 巩泽文, 李甘, 等.碳酸盐岩裂缝性储层测井识别及评价技术综述与展望[J].地球物理学进展, 2012, 27(2):537-547. doi: 10.6038/j.issn.1004-2903.2012.02.017

    Zhao J L, Gong Z W, Li G, et al.A review and perspective of identifying and evaluating the logging technology of fractured carbonate reservoir[J].Progress in Geophysics, 2012, 27(2):537-547(in Chinese with English abstract). doi: 10.6038/j.issn.1004-2903.2012.02.017
    [15] 李映涛, 袁晓宇, 叶宁, 等.塔里木盆地玉北地区中-下奥陶统储集体断裂与裂缝特征[J].石油与天然气地质, 2014, 35(6):893-902. https://www.cnki.com.cn/Article/CJFDTOTAL-SYYT201406018.htm

    Li Y T, Yuan X Y, Ye N, et al.Fault and fracture characteristics of the Middle-Lower Ordovician in Yubei area, Tarim Basin[J].Oil & Gas Geology, 2014, 35(6):893-902(in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-SYYT201406018.htm
    [16] 赵向原, 胡向阳, 肖开华, 等.川西彭州地区雷口坡组碳酸盐岩储层裂缝特征及主控因素[J].石油与天然气地质, 2018, 39(1):30-39. https://www.cnki.com.cn/Article/CJFDTOTAL-SYYT201801005.htm

    Zhao X Y, Hu X Y, Xiao K H et al.Characteristics and major control factors of natural fractures in carbonate reservoirs of Leikoupo Formation in Pengzhou area, western Sichuan Basin[J].Oil & Gas Geology, 2018, 39(1):30-39(in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-SYYT201801005.htm
    [17] 肖阳, 刘国平, 韩春元, 等.冀中坳陷深层碳酸盐岩储层天然裂缝发育特征与主控因素[J].天然气工业, 2018, 38(11):33-42. doi: 10.3787/j.issn.1000-0976.2018.11.004

    Xiao Y, Liu G P, Han C Y, et al.Development characteristics and main controlling factors of natural fractures in deep carbonate reservoirs in the Jizhong Depression[J].Natural Gas Industry, 2018, 38(11):33-42(in Chinese with English abstract). doi: 10.3787/j.issn.1000-0976.2018.11.004
    [18] 杨超辉, 王圣涛.呵叻盆地H区二叠系Pha Nok Khao组碳酸盐岩储层特征研究[J].地下水, 2020, 42(2):116-119. https://www.cnki.com.cn/Article/CJFDTOTAL-DXSU202002042.htm

    Yang C H, Wang S T.Study on the carbonate reservoir characteristics of Permian Pha Nok Khao Formation in the H area, Korat Basin[J].Ground Water, 2020, 42(2):116-119(in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-DXSU202002042.htm
    [19] 赫俊民, 王小垚, 孙建芳, 等.塔里木盆地塔河地区中-下奥陶统碳酸盐岩储层天然裂缝发育特征及主控因素[J].石油与天然气地质, 2019, 40(5):1022-1030. https://www.cnki.com.cn/Article/CJFDTOTAL-SYYT201905007.htm

    He J M, Wang X Y, Sun J F, et al.Characteristics and main controlling factors of natural fractures in the Lower-to-Middle Ordovician carbonate reservoirs in Tahe area.Northern Tarim Basin[J].Oil & Gas Geology, 2019, 40(5):1022-1030(in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-SYYT201905007.htm
    [20] 李长海, 赵伦, 李伟强, 等.碳酸盐岩缝合线研究进展及对油气开发的意义[J].天然气地球科学, 2019, 30(4):493-502. https://www.cnki.com.cn/Article/CJFDTOTAL-TDKX201904005.htm

    Li C H, Zhao L, Li W Q, et al.Research status and its significance to oilfield development of stylolite in carbonate[J].Natural Gas Geoscience, 2019, 30(4):493-502(in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-TDKX201904005.htm
    [21] 肖笛, 谭秀成, 郗爱华, 等.四川盆地南部中二叠统茅口组碳酸盐岩岩溶特征:古大陆环境下层控型早成岩期岩溶实例[J].古地理学报, 2015, 17(4):457-476. https://www.cnki.com.cn/Article/CJFDTOTAL-GDLX201504003.htm

    Xiao D, Tan X C, Xi A H, et al.Palaeokarst characteristics of carbonate rocks of the Middle Permian Maokou Formation in southern Sichuan Basin:Example of strata-bound eogenetic karst in palaeo-continental settings[J].Journal of Palaeogeography, 2015, 17(4):457-476(in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-GDLX201504003.htm
    [22] 倪新锋, 杨海军, 沈安江, 等.塔北地区奥陶系灰岩段裂缝特征及其对岩溶储层的控制[J].石油学报, 2010, 31(6):933-940. https://www.cnki.com.cn/Article/CJFDTOTAL-SYXB201006011.htm

    Ni X F, Yang H J, Shen A J, et al.Characteristics of Ordovician limestone fractures in the northern Tarim Basin and their controlling effects on karst reservoirs[J].Acta Petrolei Sinica, 2010, 31(6):933-940(in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-SYXB201006011.htm
    [23] 成玮.泥岩收缩裂缝发育规律与形成机理研究[D].北京:中国石油大学(北京), 2010.

    Cheng W.Study on development pattern and formation mechanism of mudstone shrinkage cracks[D].Beijing:China University of Petroleum(Beijing), 2010(in Chinese with English abstract).
    [24] 胡东风, 王良军, 张汉荣, 等.碳酸盐岩烃源岩气藏的发现及其油气地质意义:以四川盆地涪陵地区中二叠统茅口组一段气藏为例[J].天然气工业, 2020, 40(7):23-33. doi: 10.3787/j.issn.1000-0976.2020.07.003

    Hu D F, Wang L J, Zhang H R, et al.Discovery of carbonate source rock gas reservoir and its petroleum geological implications:A case study of the gas reservoir in the first Member of Middle Permian Maokou Formation in the Fuling area, Sichuan Basin[J].Natural Gas Industry, 2020, 40(7):23-33(in Chinese with English abstract). doi: 10.3787/j.issn.1000-0976.2020.07.003
    [25] Zhou X, Ding W, He J, et al.Microfractures in the Middle Carboniferous carbonate rocks and their control on reservoir quality in the Zanaral Oilfield[J].Marine and Petroleum Geology, 2018, 92:462-476. doi: 10.1016/j.marpetgeo.2017.11.009
    [26] 胡向阳, 赵向原, 宿亚仙, 等.四川盆地龙门山前构造带中三叠统雷口坡组四段碳酸盐岩储层裂缝形成机理[J].天然气工业, 2018, 38(11):15-25. doi: 10.3787/j.issn.1000-0976.2018.11.002

    Hu X Y, Zhao X Y, Su Y X, et al.Formation mechanism of fractures in the carbonate reservoir of the 4th Member of Middle Triassic Leikoupo Fm in Longmenshan piedmont, Sichuan Basin[J].Natural Gas Industry, 2018, 38(11):15-25(in Chinese with English abstract). doi: 10.3787/j.issn.1000-0976.2018.11.002
    [27] 杨学君.大北气田低孔低渗砂岩储层裂缝特征及形成机理研究[D].青岛:中国石油大学, 2011.

    Yang X J.Characterisics and origin of fractures in tight sandstone reservoirs with low permeability, Dabei Gas Field[D].Qingdao Shandong:China University of Petroleum, 2011(in Chinese with English abstract).
    [28] 刘亿.巴楚隆起鹰山组碳酸盐岩储层特征及其主控因素[D].成都:成都理工大学, 2013.

    Liu Y.Research on reservoir characterization and key controlling factors of Ordovician Yingshan Formation carbonate reservoir in Bachu region[D].Chengdu:Chengdu University of Technology, 2013(in Chinese with English abstract).
    [29] Li C, Zhao L, Liu B, et al.Origin, distribution and implications on production of bedding-parallel fractures:A case from the Carboniferous KT-ⅠFormation in the NT Oilfield, Precaspian Basin, Kazakhstan[J].Journal of Petroleum Science and Engineering, 2020, 196:107655. http://www.sciencedirect.com/science/article/pii/S0920410520307221
    [30] 王淑琴.异常高压碳酸盐岩油藏储层成因及表征技术[D].北京:中国地质大学(北京), 2012.

    Wang S Q.Genesis and characterization techniques of carbonate reservoir under overpressure:A case study of the Carboniferous oil reservoir of Kenkyak Lying in the eastern margin of the Pre-caspian Sea Basin[D].Beijing:China University of Geosciences(Beijing), 2012(in Chinese with English abstract).
    [31] 毛严.储层裂缝发育期次研究方法与进展[J].化工管理, 2018(27):39-40. doi: 10.3969/j.issn.1008-4800.2018.27.026

    Mao Y.Research methods and progress of reservoir fracture development stages[J].Chemical Enterprise Management, 2018(27):39-40(in Chinese with English abstract). doi: 10.3969/j.issn.1008-4800.2018.27.026
    [32] 邱隆伟, 畅通, 张营革, 等.义东地区碳酸盐岩储层裂缝特征、期次及成因机制[J].东北石油大学学报, 2018, 42(5):16-24. doi: 10.3969/j.issn.2095-4107.2018.05.002

    Qiu L W, Chang T, Zhang Y G, Features and stages, formation mechanism of fracture of carbonate reservoir in Yidong area[J].Journal of Northeast Petroleum University, 2018, 42(5):16-24(in Chinese with English abstract). doi: 10.3969/j.issn.2095-4107.2018.05.002
    [33] 任丽华, 林承焰.构造裂缝发育期次划分方法研究与应用:以海拉尔盆地布达特群为例[J].沉积学报, 2007, 25(2):253-260. doi: 10.3969/j.issn.1000-0550.2007.02.013

    Ren L H, Lin C Y.Classification methods for development period of fractures and its application:A case study from Budate Group of Hailaer Basin[J].Acta Sedimentologica Sinica, 2007, 25(2):253-260(in Chinese with English abstract). doi: 10.3969/j.issn.1000-0550.2007.02.013
    [34] 李长海, 赵伦, 李建新, 等.滨里海盆地东缘构造缝形成期次及低角度构造缝成因[J].特种油气藏, 2019, 26(3):56-61. doi: 10.3969/j.issn.1006-6535.2019.03.010

    Li C H, Zhao L, Li J X, et al.Structural fracture formation stages in the eastern margin of the Caspian Basin and genesis of low-angle structural fracture[J].Special Oil & Gas Reservoirs, 2019, 26(3):56-61(in Chinese with English abstract). doi: 10.3969/j.issn.1006-6535.2019.03.010
    [35] Peacock D, Mann A.Evaluation of the controls on fracturing in reservoir rocks[J].Journal of Petroleum Geology, 2005, 28(4):385-396. doi: 10.1111/j.1747-5457.2005.tb00089.x
    [36] Pireh A, Alavi S A, Ghassemi M R, et al.Analysis of natural fractures and effect of deformation intensity on fracture density in Garau Formation for shale gas development within two anticlines of Zagros fold and thrust belt, Iran[J].Journal of Petroleum Science and Engineering, 2015, 125:162-180. doi: 10.1016/j.petrol.2014.11.016
    [37] Guerriero V, Iannace A, Mazzoli S, et al.Quantifying uncertainties in multi-scale studies of fractured reservoir analogues:Implemented statistical analysis of scan line data from carbonate rocks[J].Journal of Structural Geology, 2010, 32(9):1271-1278. doi: 10.1016/j.jsg.2009.04.016
    [38] Korneva I, Bastesen E, Corlett H, et al.The effects of dolomitization on petrophysical properties and fracture distribution within rift-related carbonates(Hammam Faraun Fault Block, Suez Rift, Egypt)[J].Journal of Structural Geology, 2018, 108:108-120. doi: 10.1016/j.jsg.2017.06.005
    [39] Hatzor Y H, Palchik V.The influence of grain size and porosity on crack initiation stress and critical flaw length in dolomites[J].International Journal of Rock Mechanics and Mining Sciences, 1997, 34(5):805-816. doi: 10.1016/S1365-1609(96)00066-6
    [40] Hanks C L, Lorenz J, Teufel L, et al.Lithologic and structural controls on natural fracture distribution and behavior within the Lisburne Group, northeastern Brooks Range and North Slope subsurface, Alaska[J].AAPG Bulletin, 1997, 81(10):1700-1720. http://www.researchgate.net/publication/308485684_Lithologic_and_Structural_Controls_on_Natural_Fracture_Distribution_and_Behavior_Within_the_Lisburne_Group_Northeastern_Brooks_Range_and_North_Slope_Subsurface_Alaska
    [41] Hugman R H H, Friedman M.Effects of texture and composition on mechanical behavior of experimentally deformed carbonate rocks[J].AAPG Bulletin, 1979, 63(9):1478-1489. http://aapgbull.geoscienceworld.org/content/63/9/1478
    [42] 李树博, 姜伟, 张效恭, 等.塔里木盆地巴楚凸起H气田奥陶系裂缝主控因素及演化序列研究[J].地质力学学报, 2019, 25(4):518-526. https://www.cnki.com.cn/Article/CJFDTOTAL-DZLX201904008.htm

    Li S B, Jiang W, Zhang X G, et al.The main controlling factors and evolutionary sequence of Ordovician fracture in H gas field of Bachu uplift, Tarim Basin[J].Journal of Geomechanics, 2019, 25(4):518-526(in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-DZLX201904008.htm
    [43] 徐芳, 张文旗, 张兴阳, 等.裂缝性碳酸盐岩气藏相控条件下测井裂缝解释:以土库曼斯坦阿姆河右岸为例[J].天然气地球科学, 2016, 27(8):1549-1556. https://www.cnki.com.cn/Article/CJFDTOTAL-TDKX201608022.htm

    Xu F, Zhang W Q, Zhang X Y, et al.Sedimentary facies controlled fracture quantitative interpretation of fractured carbonate gas reservoirs:A case study of the right bank of Amu Darya, Turkmenistan[J].Natural Gas Geoscience, 2016, 27(8):1549-1556(in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-TDKX201608022.htm
    [44] Palchik V, Hatzor Y H.The influence of porosity on tensile and compressive strength of porous chalks[J].Rock Mechanics and Rock Engineering, 2004, 37(4):331-341. doi: 10.1007/s00603-003-0020-1
    [45] Hebib R, Belhai D, Alloul B.Estimation of uniaxial compressive strength of North Algeria sedimentary rocks using density, porosity, and Schmidt hardness[J].Arabian Journal of Geosciences, 2017, 10(17):383-390. doi: 10.1007/s12517-017-3144-4
    [46] Lezin C, Odonne F, Massonnat G J, et al.Dependence of joint spacing on rock properties in carbonate strata[J].AAPG Bulletin, 2009, 93(2):271-290. doi: 10.1306/09150808023
    [47] Giorgioni M, Iannace A, D'Amore M, et al.Impact of early dolomitization on multi-scale petrophysical heterogeneities and fracture intensity of low-porosity platform carbonates(Albian-Cenomanian, southern Apennines, Italy)[J].Marine & Petroleum Geology, 2016, 73:462-478. http://www.sciencedirect.com/science/article/pii/S026481721630068X
    [48] 张江晖, 徐守余, 蒋静, 等.含夹层碳酸盐岩储层裂缝发育规律研究[J].地质科技情报, 2019, 38(2):75-80. https://www.cnki.com.cn/Article/CJFDTOTAL-DZKQ201902009.htm

    Zhang J H, Xu S Y, Jiang J, et al.Fracture development in the carbonate reservoir with interlayers[J].Geological Science and Technology Information, 2019, 38(2):75-80(in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-DZKQ201902009.htm
    [49] 赵文韬, 侯贵廷, 张居增, 等.层厚与岩性控制裂缝发育的力学机理研究:以鄂尔多斯盆地延长组为例[J].北京大学学报:自然科学版, 2015, 51(6):1047-1058. https://www.cnki.com.cn/Article/CJFDTOTAL-BJDZ201506010.htm

    Zhao W T, Hou G T, Zhang J Z, et al.Study on the development law of structural fractures of Yanchang Formation in Longdong area, Ordos Basin[J].Acta Scientiarum Naturalium Universitatis Pekinensis, 2015, 51(6):1047-1058(in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-BJDZ201506010.htm
    [50] Murray Jr G H.Quantitative fracture study: Sanish Pool, McKenzie County, North Dakota[J].AAPG Bulletin, 1968, 52(1):57-65. http://www.researchgate.net/publication/270483544_Quantitative_Fracture_Study--Sanish_Pool_McKenzie_County_North_Dakota_ABSTRACT
    [51] Milad B, Slatt R.Impact of lithofacies variations and structural changes on natural fracture distributions[J].Interpretation, 2018, 6(4):T873-T887. doi: 10.1190/INT-2017-0138.1
    [52] Ramsay J G.Folding and fracturing of rocks[M].New York:Mc Graw Hill, 1967.
    [53] Lisle R J.Constant bed-length folding:Three-dimensional geometrical implications[J].Journal of Structural Geology, 1992, 14(2):245-252. doi: 10.1016/0191-8141(92)90061-Z
    [54] Richard J L.Detection of zones of abnormal strains in structures using Gaussian curvature analysis[J].AAPG Bulletin, 1994, 78(12):1811-1819. http://aapgbull.geoscienceworld.org/content/78/12/1811
    [55] Ghosh K, Mitra S.Structural controls of fracture orientations, intensity, and connectivity, Teton anticline, Sawtooth Range, Montana[J].AAPG Bulletin, 2009, 93(8):995-1014. doi: 10.1306/04020908115
    [56] Jamison W R.Quantitative evaluation of fractures on Monkshood anticline, a detachment fold in the foothills of western Canada[J].AAPG Bulletin, 1997, 81(7):1110-1132.
    [57] Iñigo J F, Laubach S E, Hooker J N.Fracture abundance and patterns in the Subandean fold and thrust belt, Devonian Huamampampa Formation petroleum reservoirs and outcrops, Argentina and Bolivia[J].Marine and Petroleum Geology, 2012, 35(1):201-218. doi: 10.1016/j.marpetgeo.2012.01.010
    [58] Ortega O J, Gale J F, Marrett R.Quantifying diagenetic and stratigraphic controls on fracture intensity in platform carbonates:An example from the Sierra Madre Oriental, northeast Mexico[J].Journal of Structural Geology, 2010, 32(12):1943-1959. doi: 10.1016/j.jsg.2010.07.004
    [59] McQuillan H.Small-scale fracture density in Asmari Formation of southwest Iran and its relation to bed thickness and structural setting[J].AAPG Bulletin, 1973, 57(12):2367-2385.
    [60] Bergbauer S, Pollard D D.A new conceptual fold-fracture model including prefolding joints, based on the Emigrant Gap anticline, Wyoming[J].Geological Society of America Bulletin, 2004, 116(3/4):294-307. http://adsabs.harvard.edu/abs/2004gsab..116..294b
    [61] Watkins H, Bond C E, Cawood A J, et al.Fracture distribution on the swift reservoir anticline, Montana:Implications for structural and lithological controls on fracture intensity[J].Geological Society London Special Publications, 2020, 487(1):209-228. doi: 10.1144/SP487.9
    [62] Zeng L, Lyu W, Li J, et al.Natural fractures and their influence on shale gas enrichment in Sichuan Basin, China[J].Journal of Natural Gas Science & Engineering, 2016, 30:1-9. http://www.sciencedirect.com/science/article/pii/S1875510015302882
    [63] 刘卫彬, 张世奇, 徐兴友, 等.东濮凹陷沙三段致密砂岩储层裂缝形成机制及对储层物性的影响[J].大地构造与成矿学, 2019, 43(1):58-68. https://www.cnki.com.cn/Article/CJFDTOTAL-DGYK201901005.htm

    Liu W B, Zhang S Q, Xu X Y, et al.Fracturing and its influence on the compact sandstone reservoir in the third Member of the Shahejie Formation in the northern Dongpu Depression[J].Geotectonica et Metallogenia, 2019, 43(1):58-68(in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-DGYK201901005.htm
    [64] 刘国平, 曾联波, 雷茂盛, 等.徐家围子断陷火山岩储层裂缝发育特征及主控因素[J].中国地质, 2016, 43(1):329-337. doi: 10.3969/j.issn.1000-3657.2016.01.025

    Liu G P, Zeng L B, Lei M S, et al.Fracture development characteristics and main controlling factors of the volcanic reservoir in Xujiaweizi fault depression[J].Geology in China, 2016, 43(1):329-337 (in Chinese with English abstract). doi: 10.3969/j.issn.1000-3657.2016.01.025
    [65] 陈霞飞, 桑晓彤.断层带与裂缝关系研究进展[J].河南科学, 2017, 35(6):951-958. doi: 10.3969/j.issn.1004-3918.2017.06.020

    Chen X F, Sang X T.Review on the relationship between the fault zone and cracks[J].Henan Science, 2017, 35(6):951-958(in Chinese with English abstract). doi: 10.3969/j.issn.1004-3918.2017.06.020
    [66] 杨少春, 牛海瑞, 宋明水, 等.车排子地区石炭系挤压逆冲构造区断层共生裂缝发育程度定量表征[J].中国石油大学学报:自然科学版, 2017, 41(5):1-8. doi: 10.3969/j.issn.1673-5005.2017.05.001

    Yang S C, Niu H R, Song M S, et al.Quantitative characterization of development degree of fault-related fracture in compression thrust structure block of the Carboniferous in Chepaizi area[J].Journal of China University of Petroleum:Natural Science Edition, 2017, 41(5):1-8(in Chinese with English abstract). doi: 10.3969/j.issn.1673-5005.2017.05.001
    [67] Lavenu A P, Lamarche J, Gallois A, et al.Tectonic versus diagenetic origin of fractures in a naturally fractured carbonate reservoir analog(Nerthe anticline, southeastern France)[J].AAPG Bulletin, 2013, 97(12):2207-2232. doi: 10.1306/04041312225
    [68] Peacock D, Azzam I N.Development and scaling relationships of a stylolite population[J].Journal of Structural Geology, 2006, 28(10):1883-1889. doi: 10.1016/j.jsg.2006.04.008
    [69] 李南, 程林松, 廉培庆, 等.异常高压碳酸岩油藏水力破裂缝成因[J].世界地质, 2011, 30(1):56-59. doi: 10.3969/j.issn.1004-5589.2011.01.009

    Li N, Cheng L S, Liang P Q, et al.Cause of hydraulic fractures in carbonate reservoir ith abnormal high pressure[J].Global Geology, 2011, 30(1):56-59(in Chinese with English abstract). doi: 10.3969/j.issn.1004-5589.2011.01.009
    [70] 钱一雄, Taberner Conxita, 邹森林, 等.碳酸盐岩表生岩溶与埋藏溶蚀比较:以塔北和塔中地区为例[J].海相油气地质, 2007, 12(2):1-7. doi: 10.3969/j.issn.1672-9854.2007.02.001

    Qiang Y X, Taberner C, Zou S L, et al.Diagenesis comparison between epigenic karstification and burial dissolutionin carbonate reser voirs:An instance of Ordovician carbonate reservoirs in Tabei and Tazhong regions, Tarim Basin[J].Marine Origin Petroleum Geology, 2007, 12(2):1-7(in Chinese with English abstract). doi: 10.3969/j.issn.1672-9854.2007.02.001
    [71] Barbier M, Hamon Y, Callot J, et al.Sedimentary and diagenetic controls on the multiscale fracturing pattern of a carbonate reservoir:The Madison Formation(Sheep Mountain, Wyoming, USA)[J].Marine and Petroleum Geology, 2011, 29(1):50-67. http://www.sciencedirect.com/science/article/pii/S0264817211001954
    [72] Di Naccio D, Boncio P, Cirilli S, et al.Role of mechanical stratigraphy on fracture development in carbonate reservoirs:Insights from outcropping shallow water carbonates in the Umbria-Marche Apennines, Italy[J].Journal of Volcanology and Geothermal Research, 2005, 148(1/2):98-115.
    [73] Rafiei M, Rahimpour-Bonab H, Tavakoli V, et al.Quantifying sedimentary and diagenetic controls on fracturing:An application in rock engineering systems[J].Journal of Geophysics and Engineering, 2016, 13(6):928-939. doi: 10.1088/1742-2132/13/6/928
    [74] Lavenu A P, Lamarche J.What controls diffuse fractures in platform carbonates? Insights from Provence(France) and Apulia(Italy)[J].Journal of Structural Geology, 2018, 108:94-107. doi: 10.1016/j.jsg.2017.05.011
    [75] Lavenu A P, Lamarche J, Salardon R, et al.Relating background fractures to diagenesis and rock physical properties in a platform-slope transect:Example of the Maiella Mountain(central Italy)[J].Marine and Petroleum Geology, 2014, 51:2-19. doi: 10.1016/j.marpetgeo.2013.11.012
    [76] Lavenu A P, Lamarche J, Texier L, et al.Background fractures in carbonates:Inference on control of sedimentary facies, diagenesis and petrophysics on rock mechanical behavior.Example of the Murge Plateau(southern Italy)[J].Italian Journal of Geosciences, 2015, 134(3):535-555. doi: 10.3301/IJG.2014.58
    [77] Wennberg O P, Svånå T, Azizzadeh M, et al.Fracture intensity vs.mechanical stratigraphy in platform top carbonates:The Aquitanian of the Asmari Formation, Khaviz Anticline, Zagros, SW Iran[J].Petroleum Geoscience, 2006, 12(3):235-246. doi: 10.1144/1354-079305-675
    [78] Rustichelli A, Iannace A, Girundo M.Dolomitization impact on fracture density in pelagic carbonates:Contrasting case studies from the Gargano Promontory and the Southern Apennines(Italy)[J].Italian Journal of Geosciences, 2015, 134(3):556-575. doi: 10.3301/IJG.2014.43
    [79] 李军, 张超谟, 李进福, 等.库车前陆盆地构造压实作用及其对储集层的影响[J].石油勘探与开发, 2011, 38(1):47-51. https://www.cnki.com.cn/Article/CJFDTOTAL-SKYK201101008.htm

    Li J, Zhang C M, Li J F, et al.Tectonic compaction and its influence on reservoirs in the Kuqa foreland basin, Tarim[J].Petroleum Exploration and Development, 2011, 38(1):47-51(in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-SKYK201101008.htm
    [80] 程敬华, 李荣西, 覃小丽, 等.成岩相对低渗透储层砂岩岩石力学性质的控制:以鄂尔多斯盆地东部上古生界天然气储层为例[J].石油学报, 2016, 37(10):1256-1264. doi: 10.7623/syxb201610005

    Cheng J H, Li R X, Qin X L, et al.Impact of diagenetic facies on mechanical properties of sandstone rock in permeability reservoirs:A case study of the Upper Paleozoic gas reservoir in east Ordos Basin[J].Acta Petrolei Sinica, 2016, 37(10):1256-1264(in Chinese with English abstract). doi: 10.7623/syxb201610005
    [81] Holland M, Urai J L.Evolution of anastomosing crack-seal vein networks in limestones:Insight from an exhumed high-pressure cell, Jabal Shams, Oman Mountains[J].Journal of Structural Geology, 2010, 32(9):1279-1290. doi: 10.1016/j.jsg.2009.04.011
    [82] 吕文雅, 曾联波, 周思宾, 等.鄂尔多斯盆地西南部致密砂岩储层微观裂缝特征及控制因素[J].天然气地球科学, 2020, 31(1):37-46. https://www.cnki.com.cn/Article/CJFDTOTAL-TDKX202001004.htm

    Lu W Y, Zeng L B, Zhou S B, et al.Microfracture characteristics and its controlling factors in the tight oil sandstones in the southwest Ordos Basin:Case study of the eighth member of the Yanchang Formation in Honghe Oilfield[J].Natural Gas Geoscience, 2020, 31(1):37-46(in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-TDKX202001004.htm
    [83] 巩磊, 曾联波, 杜宜静, 等.构造成岩作用对裂缝有效性的影响:以库车前陆盆地白垩系致密砂岩储层为例[J].中国矿业大学学报, 2015, 44(3):514-519. https://www.cnki.com.cn/Article/CJFDTOTAL-ZGKD201503017.htm

    Gong L, Zeng L B, Du Y J, et al.Influences of structural diagenesis on fracture effectiveness:A case study of the cretaceous tight sandstone reservoirs Ouga foreland basin[J].Journal of China University of Mining & Technology, 2015, 44(3):514-519(in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-ZGKD201503017.htm
    [84] Handin J, Heard H A, Magouirk J N.Effects of the intermediate principal stress on the failure of limestone, dolomite, and glass at different temperatures and strain rates[J].Journal of Geophysical Research, 1967, 72(2):611-640. doi: 10.1029/JZ072i002p00611
    [85] Lind I, Nykjaer O, Priisholm S, et al.Permeability of stylolite-bearing chalk[J].Journal of Petroleum Technology, 1994, 46(11):986-993. doi: 10.2118/26019-PA
    [86] Heap M J, Baud P, Reuschlé T, et al.Stylolites in limestones:Barriers to fluid flow?[J].Geology, 2014, 42(1):51-54. doi: 10.1130/G34900.1
    [87] Baud P, Rolland A, Heap M, et al.Impact of stylolites on the mechanical strength of limestone[J].Tectonophysics, 2016, 690:4-20. doi: 10.1016/j.tecto.2016.03.004
    [88] 姚华彦, 冯夏庭, 崔强, 等.化学侵蚀下硬脆性灰岩变形和强度特性的试验研究[J].岩土力学, 2009, 30(2):338-344. doi: 10.3969/j.issn.1000-7598.2009.02.009

    Yao Y H, Feng X T, Cui Q, et al.Experimental study of effect of chemical corrosion on strength and deformation of hard brittle limestone[J].Rock and Soil Mechanics, 2009, 30(2):338-344(in Chinese with English abstract). doi: 10.3969/j.issn.1000-7598.2009.02.009
    [89] 罗群, 魏浩元, 刘冬冬, 等.层理缝在致密油成藏富集中的意义, 研究进展及其趋势[J].石油实验地质, 2017, 39(1):1-7. https://www.cnki.com.cn/Article/CJFDTOTAL-SYSD201701002.htm

    Luo Q, Wei Y H, Liu D D, et al.Research significance, advances and trends on the role of bedding fracture in tight oil accumulation[J].Petroleum Geology & Experiment, 2017, 39(1):1-7(in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-SYSD201701002.htm
    [90] Gale J F, Laubach S E, Olson J E, et al.Natural fractures in shale:A review and new observations[J].AAPG Bulletin, 2014, 98(11):2165-2216. doi: 10.1306/08121413151
    [91] 郭旭升, 胡东风, 魏祥峰, 等.四川盆地焦石坝地区页岩裂缝发育主控因素及对产能的影响[J].石油与天然气地质, 2016, 37(6):799-808. https://www.cnki.com.cn/Article/CJFDTOTAL-SYYT201606002.htm

    Guo X S, Hu D F, Wei X F, et al.Main controlling factors on shale fractures and their influences on production capacity in Jiaoshiba area, the Sichuan Basin[J].Oil & Gas Geology, 2016, 37(6):799-808(in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-SYYT201606002.htm
    [92] Koepnick R B.Significance of stylolite development in hydrocarbon reservoirs with an emphasis on the Lower Cretaceous of the Middle East[J].Geological Society of Malaysia Bulletin, 1988, 22:23-43. doi: 10.7186/bgsm22198802
    [93] Koepnick R B.Distribution and permeability of stylolite-bearing horizons within a Lower Cretaceous carbonate reservoir in the Middle East[J].SPE Formation Evaluation, 1987, 2(2):137-142. doi: 10.2118/14173-PA
    [94] Alsharhan A S, Sadd J L.Stylolites in Lower Cretaceous carbonate reservoirs, UAE[J].Society for Sedimentary Geology, 2000, 69:179-200. http://www.researchgate.net/publication/284840765_Stylolites_in_lower_cretaceous_carbonate_reservoirs
    [95] Ehrenberg S N, Morad S, Yaxin L, et al.Stylolites and porosity in a Lower Cretaceous limestone reservoir, onshore Abu Dhabi, UAE[J].Journal of Sedimentary Research, 2016, 86(10):1228-1247. doi: 10.2110/jsr.2016.68
    [96] Burgess C J, Peter C K.Formation, distribution, and prediction of stylolites as permeability barriers in the Thamama Group, Abu Dhabi[R]//Bahrain:Society of Petroleum Engineers, 1985.
    [97] 郇志鹏.哈拉哈塘油田奥陶系碳酸盐岩地层异常高压成因分析[J].新疆石油科技, 2016, 26(3):10-14.

    Xun Z P.Cause of abnormal high pressure in Ordovician carbonate formation in Halahatang Oilfield[J].Xinjiang Petroleum Science&Technology, 2016, 26(3):10-14(in Chinese with English abstract).
    [98] 王海芳, 杨辉廷, 陈培元, 等.塔里木盆地柯克亚凝析气田异常高压成因分析[J].新疆地质, 2014, 32(2):231-234. https://www.cnki.com.cn/Article/CJFDTOTAL-XJDI201402019.htm

    Wang H F, Yang H T, Chen P Y, et al.Genesis analysis on abnormal high pressure in Kekeya Condensate Gas-Field, Tarim Basin[J].Xinjiang Geology, 2014, 32(2):231-234(in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-XJDI201402019.htm
    [99] 卞德智, 赵伦, 陈烨菲, 等.异常高压碳酸盐岩储集层裂缝特征及形成机制:以哈萨克斯坦肯基亚克油田为例[J].石油勘探与开发, 2011, 38(4):394-399. https://www.cnki.com.cn/Article/CJFDTOTAL-SKYK201104003.htm

    Bian D Z, Zhao L, Chen Y F, et al.Fracture characteristics and genetic mechanism of overpressure carbonate reservoirs:Taking the Kenjiyak Oilfield in Kazakhstan as an example[J].Petroleum Exploration and Development, 2011, 38(4):394-399(in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-SKYK201104003.htm
    [100] 马奎, 胡素云, 刘刚, 等.塔北哈拉哈塘奥陶系岩溶储层类型与特征及控制因素[J].海洋地质与第四纪地质, 2016, 36(4):119-128. https://www.cnki.com.cn/Article/CJFDTOTAL-HYDZ201604018.htm

    Ma K, Hu S Y, Liu G, et al.Characteristics and origins of Ordovician karst reservoir in Halahatang area, northern Tarim Basin[J].Marine Geology & Quaternary Geology, 2016, 36(4):119-128(in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-HYDZ201604018.htm
    [101] 刘振峰, 曲寿利, 孙建国, 等.地震裂缝预测技术研究进展[J].石油物探, 2012, 51(2):191-198. doi: 10.3969/j.issn.1000-1441.2012.02.013

    Liu Z F, Qu S L, Sun J G, et al.Progress of seismic fracture characterization technology[J].Geophysical Prospecting for Petroleum, 2012, 51(2):191-198(in Chinese with English abstract). doi: 10.3969/j.issn.1000-1441.2012.02.013
    [102] 高金栋, 周立发, 冯乔, 等.储层构造裂缝识别及预测研究进展[J].地质科技情报, 2018, 37(4):158-166. https://www.cnki.com.cn/Article/CJFDTOTAL-DZKQ201804022.htm

    Gao J D, Zhou L F, Feng Q, et al.Progress in reservoir structural fracture characterization and prediction[J].Geological Science and Technology Information, 2018, 37(4):158-166(in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-DZKQ201804022.htm
    [103] 唐诚.储层裂缝表征及预测研究进展[J].科技导报, 2013, 31(21):74-79. doi: 10.3981/j.issn.1000-7857.2013.21.013

    Tang C.Progress in fracture characterization and prediction[J].Science & Technology Review, 2013, 31(21):74-79(in Chinese with English abstract). doi: 10.3981/j.issn.1000-7857.2013.21.013
    [104] 关宝文, 郭建明, 杨燕, 等.油气储层裂缝预测方法及发展趋势[J].特种油气藏, 2014, 21(1):12-17. doi: 10.3969/j.issn.1006-6535.2014.01.003

    Guan B W, Guo J M, Yang Y, et al.Methods of fracture prediction in oil & gas reservoirs and their development trend[J].Special Oil & Gas Reservoirs, 2014, 21(1):12-17(in Chinese with English abstract). doi: 10.3969/j.issn.1006-6535.2014.01.003
    [105] 孙炜, 李玉凤, 付建伟, 等.测井及地震裂缝识别研究进展[J].地球物理学进展, 2014, 29(3):1231-1242. https://www.cnki.com.cn/Article/CJFDTOTAL-DQWJ201403032.htm

    Sun W, Li Y F, Fu J W, et al.Review of fracture identification with well logs and seismic data[J].Progress in Geophysics, 2014, 29(3):1231-1242(in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-DQWJ201403032.htm
    [106] 何睿.储层裂缝识别技术综述[J].国外测井技术, 2018, 39(1):15-20.

    He R.Review of reservoir fracture identification technology[J].World Well Logging Technology, 2018, 39(1):15-20(in Chinese with English abstract).
    [107] 刘志远, 冒海军, 鄢宇杰, 等.塔河油田托甫台区块奥陶系一间房组裂缝分布特征[J].地质科技情报, 2019, 38(5):64-70. https://www.cnki.com.cn/Article/CJFDTOTAL-DZKQ201905006.htm

    Liu Z Y, Mao H J, Yan Y J, et al.Distribution characteristics of fractures in the Ordovician Yijianfang Formation in Tuofutai area, Tahe Oilfield[J].Geological Science and Technology Information, 2019, 38(5):64-70(in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-DZKQ201905006.htm
    [108] 董经利, 许孝凯, 张晋言, 等.声波远探测技术概述及发展[J].地球物理学进展, 2020, 35(2):566-572. https://www.cnki.com.cn/Article/CJFDTOTAL-DQWJ202002021.htm

    Dong J L, Xu X K, Zhang J Y, et al.Overview and development of acoustic far detection technology[J].Progress in Geophysics, 2020, 35(2):566-572(in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-DQWJ202002021.htm
    [109] 李东阳.常规测井曲线裂缝识别方法研究[D].北京:中国石油大学(北京), 2011.

    Li D Y.Study on the methodology of fracture identification from conventional logging curve[D].Beijing:China University of Petroleum(Beijing), 2011(in Chinese with English abstract).
    [110] Hulea I N.Capillary pressure and permeability prediction in carbonate rocks:New methods for fractures detection and accurate matrix properties prediction[C]//Anon.Paper 164251 presented at the SPE Middle East Oil and Gas Show and Exhibition, 2013, SPE 164251.
    [111] Hou J, Donderici B, Torres D, et al.Characterization of formation fractures with multicomponent induction logging based on biaxial anisotropy models:Method and case studies[C].Society of Petrophysicists and Well-Log Analysts, 2015, SPWLA-2015-FF:1-20.
    [112] 杨闯, 王祝文, 向旻, 等.基于Choi-Williams时频分布的裂缝性地层时频特征[J].世界地质, 2015, 34(3):825-829. doi: 10.3969/j.issn.1004-5589.2015.03.030

    Yang C, Wang Z W, Xiang C, et al.Time-frequency characteristics of fractured formation based on Choi-williams energy distribution[J].Global Geology, 2015, 34(3):825-829(in Chinese with English abstract). doi: 10.3969/j.issn.1004-5589.2015.03.030
    [113] 苗清, 秦华明, 刘江, 等.裂缝识别测井技术开发与应用[J].大庆石油地质与开发, 2016, 35(6):138-143. doi: 10.3969/J.ISSN.1000-3754.2016.06.026

    Miao Q, Qin H M, Liu J, et al.Development of fracture dentifying well-logging technique and its application[J].Petroleum Geology & Oilfield Development in Daqing, 2016, 35(6):138-143(in Chinese with English abstract). doi: 10.3969/J.ISSN.1000-3754.2016.06.026
    [114] 王永刚.埕北地区碳酸盐岩储层裂缝识别与定量解释[J].新疆石油科技, 2012, 22(2):35-38.

    Wang Y G.Fracture identification and quantitative interpretation of carbonate reservoir in Chengbei area[J].Xinjiang Petroleum Science&Technology, 2012, 22(2):35-38.
    [115] 张凌云.基于常规测井的花茶油田碳酸盐岩储层评价技术[J].海洋石油, 2007, 27(2):97-102. doi: 10.3969/j.issn.1008-2336.2007.02.022

    Zhang L Y.Carbonate reservoir evaluation in Huacha Oilfield based on normal logging[J].Offshore Oil, 2007, 27(2):97-102(in Chinese with English abstract). doi: 10.3969/j.issn.1008-2336.2007.02.022
    [116] Tan F, Li H, Sun Z, et al.Identification of natural gas fractured volcanic formation by using numerical inversion method[J].Journal of Petroleum Science and Engineering, 2013, 108:172-719. doi: 10.1016/j.petrol.2013.02.004
    [117] 曹飞.裂缝性岩石声波参数实验研究及裂缝性储层测井评价[D].长春:吉林大学, 2015.

    Cao F.The acoustic parameters experimental research of fractured rocks and the log evaluation of fractured reservoirs[D].Changchun:Jilin University, 2015(in Chinese with English abstract).
    [118] 戴俊生, 汪必峰.综合方法识别和预测储层裂缝[J].油气地质与采收率, 2003, 10(1):1-2. doi: 10.3969/j.issn.1009-9603.2003.01.001

    Dai J S, Wang B F.Integrated approach of identifying and predicting fracture in reservoir[J].Petroleum Geology and Recovery Efficiency, 2003, 10(1):1-2(in Chinese with English abstract). doi: 10.3969/j.issn.1009-9603.2003.01.001
    [119] Aghli G, Soleimani B, Moussavi-Harami R, et al.Fractured zones detection using conventional petrophysical logs by differentiation method and its correlation with image logs[J].Journal of Petroleum Science & Engineering, 2016, 142:152-162. http://www.sciencedirect.com/science/article/pii/S0920410516300456
    [120] 何胡军, 毕建霞, 曾大乾, 等.基于测井曲线斜率的KNN分类算法常规测井裂缝识别:以普光气田礁滩相储层为例[J].中外能源, 2014, 19(1):70-74. doi: 10.3969/j.issn.1673-579X.2014.01.013

    He H J, Bi J X, Zeng D Q, et al.Fracture identification in conventional log through KNN classification algorithm based on slope of logging curve[J].Sino-Global Energy, 2014, 19(1):70-74(in Chinese with English abstract). doi: 10.3969/j.issn.1673-579X.2014.01.013
    [121] 陈科贵, 刘思序, 王兆峰, 等.基于曲线重构的缝洞型碳酸盐岩储层测井识别研究:以南图尔盖盆地Karabulak油田Pz层为例[J].地球科学进展, 2018, 33(11):1154-1160. doi: 10.11867/j.issn.1001-8166.2018.11.1154.

    Chen K G, Liu S X, Wang Z F, et al.A logging identification method for fractured vuggy carbonate reservoirs based on curve reconstruction:A case study from the Pz formation in Karabulak Oilfield in the South Turgai Basin[J].Advances in Earth Science, 2018, 33(11):1154-1160(in Chinese with English abstract). doi: 10.11867/j.issn.1001-8166.2018.11.1154.
    [122] 姚悦, 王刚, 谭明靖.泥质白云岩储层裂缝识别及常规测井评价[J].地质科技情报, 2017, 36(3):271-277. https://www.cnki.com.cn/Article/CJFDTOTAL-DZKQ201703038.htm

    Yao Y, Wang G, Tan M J.Identification and conventional logging evaluation of argillaceous dolomite fractures[J].Geological Science and Technology Information, 2017, 36(3):271-277(in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-DZKQ201703038.htm
    [123] 孙建孟, 刘坤, 王艳, 等.泥页岩储层裂缝识别与有效性评价研究[J].测井技术, 2015, 39(5):611-616. https://www.cnki.com.cn/Article/CJFDTOTAL-CJJS201505016.htm

    Sun J M, Liu K, Wang Y, et al.Fracture dentification and effectiveness evaluation research of shale reservoir[J].Well Logging Technology, 2015, 39(5):611-616(in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-CJJS201505016.htm
    [124] 刘珺.红河油田延长组裂缝识别技术在水平井中应用[J].内蒙古石油化工, 2014, 40(19):116-118. doi: 10.3969/j.issn.1006-7981.2014.19.047

    Liu J.Application in horizontal well of fracture identification of Yanchang Formation in Honghe Oilfield of Ordos Basin[J].Inner Mongolia Petrochemical Industry, 2014, 40(19):116-118(in Chinese with English abstract). doi: 10.3969/j.issn.1006-7981.2014.19.047
    [125] 唐洪, 廖明光, 靳松, 等.基于常规测井资料的裂缝概率模型及其应用[J].天然气工业, 2012, 32(10):28-30. doi: 10.3787/j.issn.1000-0976.2012.10.006

    Tang H, Liao M G, Jin S, et al.A conventional log based fracture probability model and its application[J].Natural Gas Industry, 2012, 32(10):28-30(in Chinese with English abstract). doi: 10.3787/j.issn.1000-0976.2012.10.006
    [126] 张文静.小波多尺度分析方法识别储层裂缝[D].青岛:中国石油大学, 2009.

    Zhang W J.Identify fracture with wavelet multi-scale analysis method[D].Qingdao Shandong:China University of Petroleum, 2009(in Chinese with English abstract).
    [127] 梁利喜, 许强, 刘向君.灰色理论在裂缝性储层测井识别中的应用[J].特种油气藏, 2006, 13(2):16-18. doi: 10.3969/j.issn.1006-6535.2006.02.005

    Liang L X, Xu Q, Liu X J.Identification of fractured formation with grey theory[J].Special Oil & Gas Reservoirs, 2006, 13(2):16-18(in Chinese with English abstract). doi: 10.3969/j.issn.1006-6535.2006.02.005
    [128] Ghasem A, Reza M H, Saiedollah M, et al.Evaluation of new method for estimation of fracture parameters using conventional petrophysical logs and ANFIS in the carbonate heterogeneous reservoirs[J].Journal of Petroleum Science & Engineering, 2018:S975224671.
    [129] 蒋健美.川西DY地区须家河组裂缝识别方法研究[D].成都:成都理工大学, 2013.

    Jiang J M.The research on the fracture identification of Xujiahe Formation in DY region in western Sichuan[D].Chengdu:Chengdu University of Technology, 2013(in Chinese with English abstract).
    [130] 董双波, 柯式镇, 张红静, 等.利用常规测井资料识别裂缝方法研究[J].测井技术, 2013, 37(4):380-384. doi: 10.3969/j.issn.1004-1338.2013.04.008

    Dong S B, Ke S Z, Zhang H J, et al.On fracture identification with conventional well logging data[J].Well Logging Technology, 2013, 37(4):380-384(in Chinese with English abstract). doi: 10.3969/j.issn.1004-1338.2013.04.008
    [131] 罗利, 胡培毅, 周政英.碳酸盐岩裂缝测井识别方法[J].石油学报, 2001, 22(3):32-35. https://www.cnki.com.cn/Article/CJFDTOTAL-SYXB200103010.htm

    Luo L, Hu P Y, Zhou Z Y.Log identification for fracture in carbonate[J].Acta Petrolei Sinica, 2001, 22(3):32-35(in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-SYXB200103010.htm
    [132] Dershowitz W S, Einstein H H.Characterizing rock joint geometry with joint system models[J].Rock Mechanics & Rock Engineering, 1988, 21(1):21-51. doi: 10.1007/BF01019674
    [133] Hooker J N, Laubach S E, Marrett R.A universal power-law scaling exponent for fracture apertures in sandstones[J].GSA Bulletin, 2014, 126(9/10):1340-1362. http://smartsearch.nstl.gov.cn/paper_detail.html?id=55f3e803f4e7830a0d961bd361aecaaa
    [134] Gillespie P A, Walsh J J, Watterson J, et al.Scaling relationships of joint and vein arrays from the Burren, Co.Clare, Ireland[J].Journal of Structural Geology, 2001, 23(2):183-201. http://www.sciencedirect.com/science/article/pii/S0191814100000900
    [135] Philipp S L.Geometry and formation of gypsum veins in mudstones at Watchet, Somerset, SW England[J].Geological Magazine, 2008, 145(6):831-844. doi: 10.1017/S0016756808005451
    [136] Larsen B, Grunnaleite I, Gudmundsson A.How fracture systems affect permeability development in shallow-water carbonate rocks:An example from the Gargano Peninsula, Italy[J].Journal of Structural Geology, 2010, 32(9):1212-1230. doi: 10.1016/j.jsg.2009.05.009
    [137] Hooker J N, Gomez L A, Laubach S E, et al.Effects of diagenesis(cement precipitation) during fracture opening on fracture aperture-size scaling in carbonate rocks[J].Geological Society, London, Special Publications, 2012, 370(1):187-206. doi: 10.1144/SP370.9
    [138] Ortega O J, Marrett R A, Laubach S E.A scale-independent approach to fracture intensity and average spacing measurement[J].AAPG Bulletin, 2006, 90(2):193-208. doi: 10.1306/08250505059
    [139] Gudmundsson A.Geometry, formation and development of tectonic fractures on the Reykjanes Peninsula, southwest Iceland[J].Tectonophysics, 1987, 139(3/4):295-308. http://www.sciencedirect.com/science/article/pii/004019518790103X
    [140] Nur A.The origin of tensile fracture lineaments[J].Journal of Structural Geology, 1982, 4(1):31-40. doi: 10.1016/0191-8141(82)90004-9
    [141] Deschamps A, Tivey M, Embley R W, et al.Quantitative study of the deformation at Southern Explorer Ridge using high-resolution bathymetric data[J].Earth and Planetary Science Letters, 2007, 259(1/2):1-17.
    [142] Kagan Y Y.Seismic moment-frequency relation for shallow earthquakes:Regional comparison[J].Journal of Geophysical Research:Solid Earth, 1997, 102(B2):2835-2852. doi: 10.1029/96JB03386
    [143] Sornette D, Sornette A.General theory of the modified Gutenberg-Richter law for large seismic moments[J].Bulletin of the Seismological Society of America, 1999, 89(4):1121-1130.
    [144] Hooker J N, Laubach S E, Marrett R.Fracture-aperture size:Frequency, spatial distribution, and growth processes in strata-bounded and non-strata-bounded fractures, Cambrian Mesón Group, NW Argentina[J].Journal of Structural Geology, 2013, 54:54-71. doi: 10.1016/j.jsg.2013.06.011
    [145] Ukar E, Lopez R G, Laubach S E, et al.Microfractures in bed-parallel veins(beef) as predictors of vertical macrofractures in shale:Vaca Muerta Formation, Agriofold-and-thrust belt, Argentina[J].Journal of South American Earth Sciences, 2017, 79:152-169. doi: 10.1016/j.jsames.2017.07.015
    [146] Schultz R A, Soliva R, Fossen H, et al.Dependence of displacement-length scaling relations for fractures and deformation bands on the volumetric changes across them[J].Journal of Structural Geology, 2008, 30(11):1405-1411. doi: 10.1016/j.jsg.2008.08.001
    [147] 孙星, 潘良云, 闫群, 等.青西油田的裂缝特征[J].石油地球物理勘探, 2011, 46(增刊1):139-143. https://www.cnki.com.cn/Article/CJFDTOTAL-SYDQ2011S1025.htm

    Sun X, Pan L Y, Yan Q, et al.Fracture characteristics in Qingxi Oilfield, Jiuquan Basin[J].Oil Geophysical Prospecting, 2011, 46(S1):139-143(in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-SYDQ2011S1025.htm
    [148] 周新桂, 邓宏文, 操成杰, 等.储层构造裂缝定量预测研究及评价方法[J].地球学报, 2003, 24(2):175-180. doi: 10.3321/j.issn:1006-3021.2003.02.015

    Zhou X G, Deng H W, Cao C J, et al.The methods for quantitative prediction and evaluation of structural fissures in reservoirs[J].Acta Geoscientica Sinica, 2003, 24(2):175-180(in Chinese with English abstract). doi: 10.3321/j.issn:1006-3021.2003.02.015
    [149] 蒲静, 秦启荣.油气储层裂缝预测方法综述[J].特种油气藏, 2008, 15(3):9-13. doi: 10.3969/j.issn.1006-6535.2008.03.002

    Pu J, Qin Q R.An overview of fracture prediction methods for oil and gas reservoirs[J].Special Oil & Gas Reservoirs, 2008, 15(3):9-13(in Chinese with English abstract). doi: 10.3969/j.issn.1006-6535.2008.03.002
    [150] 周新桂, 操成杰, 袁嘉音.储层构造裂缝定量预测与油气渗流规律研究现状和进展[J].地球科学进展, 2003, 24(3):398-404. doi: 10.3321/j.issn:1001-8166.2003.03.012

    Zhou X G, Cao C J, Yuan J Y.The research actuality and major progresses on the quantitative forecast of reservoir fractures and hydrocarbon migration law[J].Advances in Earth Science, 2003, 24(3):398-404(in Chinese with English abstract). doi: 10.3321/j.issn:1001-8166.2003.03.012
    [151] 徐珂, 戴俊生, 冯建伟, 等.南堡凹陷高深北区三维非均质应力场精细预测[J].中国矿业大学学报, 2018, 47(6):1276-1286. https://www.cnki.com.cn/Article/CJFDTOTAL-ZGKD201806012.htm

    Xu K, Dai J S, Feng J W, et al.Prediction of 3D heterogeneous in-situ stress field of northern area in Gaoshen Nanpu Sag, Bohai Bay Basin, China[J].Journal of China University of Mining & Technology, 2018, 47(6):1276-1286(in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-ZGKD201806012.htm
    [152] 孙文峰, 李玮, 李卓, 等.页岩储层微裂缝发育程度预测方法[J].科学技术与工程, 2019, 19(19):118-123. https://www.cnki.com.cn/Article/CJFDTOTAL-KXJS201919019.htm

    Sun W F, Li Wei, Li Zhuo, et al.Prediction method of micro-fracture development degree of shale reservoir[J].Science Technology and Engineering, 2019, 19(19):118-123(in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-KXJS201919019.htm
  • 加载中
图(2) / 表(5)
计量
  • 文章访问数:  1274
  • PDF下载量:  671
  • 被引次数: 0
出版历程
  • 收稿日期:  2020-10-17

目录

    /

    返回文章
    返回