留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

非均一性斜坡落石运动轨迹

陈泰江 章广成 向欣

陈泰江, 章广成, 向欣. 非均一性斜坡落石运动轨迹[J]. 地质科技通报, 2021, 40(4): 196-203, 213. doi: 10.19509/j.cnki.dzkq.2021.0413
引用本文: 陈泰江, 章广成, 向欣. 非均一性斜坡落石运动轨迹[J]. 地质科技通报, 2021, 40(4): 196-203, 213. doi: 10.19509/j.cnki.dzkq.2021.0413
Chen Taijiang, Zhang Guangcheng, Xiang Xin. Trajectory of rockfall on the uniform slope[J]. Bulletin of Geological Science and Technology, 2021, 40(4): 196-203, 213. doi: 10.19509/j.cnki.dzkq.2021.0413
Citation: Chen Taijiang, Zhang Guangcheng, Xiang Xin. Trajectory of rockfall on the uniform slope[J]. Bulletin of Geological Science and Technology, 2021, 40(4): 196-203, 213. doi: 10.19509/j.cnki.dzkq.2021.0413

非均一性斜坡落石运动轨迹

doi: 10.19509/j.cnki.dzkq.2021.0413
基金项目: 

国家重点研发计划 2018YFC1505306

国家自然科学基金项目 41877263

详细信息
    作者简介:

    陈泰江(1995-), 男, 现正攻读土木工程专业博士学位, 主要从事岩土工程力学方面的研究工作。E-mail: Chendjiang@cug.edu.cn

    通讯作者:

    章广成(1980-), 男, 教授, 博士生导师, 主要从事岩土体稳定性评价与防治方面的教学与研究工作。E-mail: zhangguangc@foxmail.com

  • 中图分类号: P642.21

Trajectory of rockfall on the uniform slope

  • 摘要: 现有的落石运动轨迹研究均将斜坡视为半无限均匀的坡面,而实际的工况下,坡面由不均一材料组成。根据落石不同的运动模式,将坡面简化为多层岩土体材料的结构形式,在滚动阶段,基于Hertz接触理论得到落石在不同坡面条件下运动特征,并给出坡面分层条件下落石切向摩擦系数的计算公式,在碰撞阶段,基于能量守恒定理,采用准静态接触力学理论得到法向恢复系数公式,理论推导得到任意层厚岩土体材料坡面条件下落石法向和切向恢复系数的解析解,然后求解得到碰撞后落石运动参数,并根据碰撞后落石的速度及回弹量关系,给出碰撞后落石运动模式转换的判别条件,最后结合运动学定理,得到3种运动模式任意分层坡面条件落石的运动轨迹,将理论公式应用于某山区落石运动轨迹预测,验证了理论公式的适用性和有效性。

     

  • 图 1  单一坡面条件下落石滚动模式[23]

    Figure 1.  Rockfall rolling mode under single slope

    图 2  分层坡面条件下落石滚动模式

    Figure 2.  Rockfall rolling mode under layered slope

    图 3  落石抛体运动模式

    Figure 3.  Movement mode of rockfall projectile

    图 4  碰撞过程计算模型[23]

    Figure 4.  Calculation model of collision process

    图 5  分层坡面下落石碰撞过程图

    Figure 5.  Collision process diagram of rockfall under the layered slope

    图 6  研究区边坡图

    Figure 6.  Slope of the study area

    图 7  危岩体WYT2形态图

    Qcol.崩积物;C1b.下石炭统大塘组砂岩

    Figure 7.  WYT2 morphology of dangerous rock mass

    图 8  落石运动轨迹计算模型

    Figure 8.  Calculation model of the rockfall trajectory

    图 9  落石运动轨迹

    Figure 9.  Rockfall trajectory

    图 10  落石运动能量包络线图

    Figure 10.  Energy envelope diagram of rockfall motion

    表  1  滚动摩擦系数[24]

    Table  1.   Rolling friction coefficient

    坡面特征 滚动摩擦系数
    光滑岩面、混凝土表面 0.40~0.60
    块石堆积坡面 0.55~0.70
    密实碎石堆积坡面、硬土坡面 0.55~0.85
    松散碎石坡面、软土坡面 0.50~0.85
    下载: 导出CSV

    表  2  落石运动计算参数

    Table  2.   Calculation parameters of rockfall movement

    材料 ρ/(g·cm-3) E/MPa υ μ
    落石 2.05 22 000 0.22 -
    堆积物 - 46 0.30 0.6
    灰岩 - 280 0.28 0.5
    下载: 导出CSV

    表  3  落石运动碰撞点速度

    Table  3.   Rockfall velocity of the point

    碰撞点 碰撞前速度/(m·s-1) 碰撞后速度/(m·s-1)
    q1 36.3 13.5
    P1 36.3 13.6
    P2 17.1 12.8
    P3 13.9 10.9
    P4 11.3 10.0
    下载: 导出CSV
  • [1] 连志鹏, 徐勇, 付圣, 等. 采用多模型融合方法评价滑坡灾害易发性: 以湖北省五峰县为例[J]. 地质科技通报, 2020, 39(3): 178-186. https://dzkjqb.cug.edu.cn/CN/abstract/abstract10035.shtml

    Lian Z P, Xu Y, Fu S, et al. Evaluation of landslide disaster vulnerability based on multi-model fusion method: A case study of Wufeng County, Hubei Province[J]. Bulletin of Geological Science and Technology, 2020, 39(3): 178-186(in Chinese with English abstract). https://dzkjqb.cug.edu.cn/CN/abstract/abstract10035.shtml
    [2] 胡燕, 李德营, 孟颂颂, 等. 基于证据权法的巴东县城滑坡灾害易发性评价[J]. 地质科技通报, 2020, 39(3): 187-194. https://dzkjqb.cug.edu.cn/CN/abstract/abstract10036.shtml

    Hu Y, Li D Y, Meng S S, et al. Landslide susceptibility evaluation of Badong County based on the right of evidence method[J]. Bulletin of Geological Science and Technology, 2020, 39(3): 187-194(in Chinese with English abstract). https://dzkjqb.cug.edu.cn/CN/abstract/abstract10036.shtml
    [3] 廖启鹏, 陈茹, 黄士真. 基于模糊综合评判与GIS方法的废弃矿区景观评价[J]. 地质科技情报, 2019, 38(6): 241-250. https://www.cnki.com.cn/Article/CJFDTOTAL-DZKQ201906029.htm

    Liao Q P, Chen R, Huang S Z. Landscape evaluation of abandoned mining area based on fuzzy comprehensive evaluation and GIS method[J]. Geological Science and Technology Information, 2019, 38(6): 241-250(in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-DZKQ201906029.htm
    [4] 张俞, 殷坤龙, 郭子正, 等. 库水位变动联合降雨作用下麻柳林滑坡稳定性评价[J]. 地质科技情报, 2019, 38(6): 198-205. https://www.cnki.com.cn/Article/CJFDTOTAL-DZKQ201906024.htm

    Zhang Y, Yin K L, Guo Z Z, et al. Evaluation on stability of Malulin landslide under the action of reservoir water level fluctuation combined with rainfall[J]. Geological Science and Technology Information, 2019, 38(6): 198-205(in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-DZKQ201906024.htm
    [5] 向欣. 边坡落石运动特性及碰撞冲击作用研究[D]. 武汉: 中国地质大学(武汉), 2010.

    Xiang X. Research on motion characteristics and impact force of rockfall[D]. Wuhan: China University of Geosciences(Wuhan), 2010(in Chinese with English abstract).
    [6] Giani G, Giacomini A, Migliazza, et al. Experimental and theoretical studies to improve rockfall analysis and protection work design[J]. Rock Mechanics and Rock Engineering, 2004, 37(5): 369-389. doi: 10.1007/s00603-004-0027-2
    [7] Bourrier F, Dorren L, Nicot F, et al. Toward objective rockfall trajectory simulation using a stochastic impact mode[J]. Geomorphology, 2009, 110: 68-79. doi: 10.1016/j.geomorph.2009.03.017
    [8] Chau K, Wong R, Wu J. Coefficient of restitution and rotational motions of rockfall impacts[J]. International Journal of Rock Mechanics and Mining Science, 2002, 39(1): 69-77. doi: 10.1016/S1365-1609(02)00016-3
    [9] Bourrier F, Berger F, Tardif P, et al. Rockfall rebound: Compasion of detailed field experiment and alternative modeling approaches[J]. Earth Surface Processes and Landforms, 2012, 37(6): 656-665. doi: 10.1002/esp.3202
    [10] Sasaoka T, Shimada H, Sasaki T, et al. Study on control of rock fragmentation at limestone quarty[J]. Journal of Coal Science & Engineering(China), 2008, 14(3): 365-368. http://www.cnki.com.cn/Article/CJFDTotal-MCXB200803005.htm
    [11] 章广成, 向欣, 唐辉明. 落石碰撞恢复系数的现场试验与数值计算[J]. 岩石力学与工程学报, 2011, 30(6): 1266-1273. https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX201106026.htm

    Zhang G C, Xiang X, Tang H M. Field test and Numerical calculation of the coefficient of rockfall impact[J]. Chinese Journal of Rock Mechanics and Engineering, 2011, 30(6): 1266-1273(in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX201106026.htm
    [12] 吴顺川, 高永涛, 杨占峰. 基于正交试验的露天矿高陡边坡落石随机预测[J]. 岩石力学与工程学报, 2006, 25(增刊1): 2826-2832. https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX2006S1034.htm

    Wu S C, Gao Y T, Yang Z F. Random prediction of rockfall in high and steep slope of open-pit mine based on orthogonal test[J]. Chinese Journal of Rock Mechanics and Engineering, 2006, 25(S1): 2826-2832(in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX2006S1034.htm
    [13] Ueno S, Odagiri X, Ma G C. An example of the DDA analysis focused on difference of the vegetation[C]//Anon. Proceedings of the 36th symposium on rock mechanics, Tokushima, 2001.
    [14] Yang M, Fukawa T, Ohnishi Y, et al. The application of 3-dimensional DDA with a spherical rigid block for rockfall simulation[J]. International Journal of Rock Mechanics and Mining Science, 2004, 41: 1-6. http://www.sciencedirect.com/science/article/pii/S1365160904001558
    [15] Guzzetti F, Crosta G, Detti R. STONE: A computer program for the three-dimensional simulation of rock-falls[J]. Computers and Geosciences, 2002, 28(9): 1079-1093. doi: 10.1016/S0098-3004(02)00025-0
    [16] Lan H, Martin D, Lim C. Rock fall analyst: A GIS extension for three-dimensional and spatially distributed rockfall hazard modeling[J]. Computers Geosciences, 2007, 33: 262-279. doi: 10.1016/j.cageo.2006.05.013
    [17] Thornton C, Ning Z, Wu C Y, et al. Contactmechanics and coefficients of restitution[M]. Berlin Heidelberg: Springer, 2001.
    [18] Mangwandi C, Cheong Y S, Adams M J, et al. The coefficient of restitution of different representative types of granules[J]. Chemical Engineering Science, 2007, 62(1): 437-450. http://www.sciencedirect.com/science/article/pii/S0009250906005549
    [19] 杨海清, 周小平. 边坡落石运动轨迹计算新方法[J]. 岩土力学, 2009, 30(11): 3411-3416. doi: 10.3969/j.issn.1000-7598.2009.11.032

    Yang H Q, Zhou X Q. A new method for calculating rockfall trajectory of slope[J]. Rock and Soil Mechanics, 2009, 30(11): 3411-3416(in Chinese with English abstract). doi: 10.3969/j.issn.1000-7598.2009.11.032
    [20] Ritchie A. Evaluation of rockfall and its control[J]. Highway Research Record, 1963, 17: 13-28. http://www.researchgate.net/publication/284329257_Evaluation_of_rockfall_and_its_control
    [21] Stevens W D. Rockfall: A tool for probalistic analysis, design of remedial measures and prediction of rockfalls[D]. Toronto: Department of Civil Engineering, University of Toronto, 1998.
    [22] Hertz H. Über die berührung fester elastischer körper(On the contact of elastic solids)[J]. Journal fur die Reine und Andgewandte Mathematik, 1882, 92: 156-171.
    [23] 吕庆, 孙红月, 翟三扣, 等. 边坡滚石运动的计算模型[J]. 自然灾害学报, 2003, 12(2): 79-84. doi: 10.3969/j.issn.1004-4574.2003.02.014

    Lü Q, Sun H Y, Zhai S K, et al. Calculation model of rock motion of slope[J]. Journal of Natural Disasters, 2003, 12(2): 79-84(in Chinese with English abstract). doi: 10.3969/j.issn.1004-4574.2003.02.014
    [24] 陈洪凯, 唐红梅, 王林峰, 等. 危岩崩塌演化理论及应用[M]. 北京: 科学出版社, 2008.

    Chen H K, Tang H M, Wang L F, et al. Theory and application of collapse evolution of dangerous rocks[M]. Beijing: Science Press, 2008(in Chinese).
    [25] 刘涌江. 大型高速岩质滑坡流体化研究[D]. 成都: 西南交通大学, 2002.

    Liu Y J. Study on fluidization of large high speed rock landslide[D]. Chengdu: Southwest Jiaotong University, 2002(in Chinese with English abstract).
  • 加载中
图(10) / 表(3)
计量
  • 文章访问数:  1141
  • PDF下载量:  626
  • 被引次数: 0
出版历程
  • 收稿日期:  2020-10-10

目录

    /

    返回文章
    返回