Experimental study on the effect of fillers on fracture closure in fault-karst reservoir
-
摘要: 裂缝是断溶体油藏的重要渗流通道,随着地层流体的采出,裂缝将发生闭合,其在地应力作用下的闭合规律对于储层渗透率具有重要影响。采集碳酸盐岩岩样,通过巴西劈裂实验制备裂缝试件,构建基于CT扫描灰度图像的裂缝变形分析方法,通过加压和卸压试验,研究裂缝在被不同填充物填充条件下的闭合规律,裂缝的闭合情况采用岩心渗透率和裂缝开度综合表征,以此研究裂缝填充物性质对裂缝闭合规律的影响。研究结果表明:随着围压的增大,裂缝开度和试件渗透率均逐渐降低;填充物延展性越强,裂缝在压力作用下闭合越明显,渗透率降低幅度越大;对于同样被石英填充的裂缝,不同的填充方式下裂缝闭合规律不同,对于裂缝的支撑效果,单层细砂>厚层细砂>中砂细砂混合(结果)。研究成果可为认识不同矿物填充裂缝在地应力作用下的闭合规律提供参考。Abstract: Fracture is an important percolation channel in fault solution reservoir, and its closure law under geostress has an important influence on reservoir permeability.The physical simulation experiments of carbonate rock samples were carried out to study the influence of fracture occurrence (vertical fracture and high angle fracture) and filling on the law of fracture closure.The fracture specimen is prepared by Brazilian splitting experiment and wire cutting method, and the fracture deformation analysis method based on CT scanning gray image is constructed.The fracture closure is characterized by core permeability and fracture width.The results show that the fracture width and specimen permeability decrease gradually with the increase of pressure; the stronger the ductility of the filler is, the more obvious the fracture closure under pressure is, and the greater the decrease of permeability is; for quartz-filled cracks, the fracture permeability is different under different filling methods, and the supporting effect on the fracture is as follows: single layer fine sand > thick layer fine sand > medium sand and fine sand mixed.
-
Key words:
- Tahe Oilfield /
- fault-karst reservoir /
- fracture closure law /
- CT scanning /
- digital core
-
表 1 垂直缝压力与渗透率关系
Table 1. Relationship between vertical fracture pressure and permeability
填充方式 无填充 锡丝 铜片 细中砂混 公式 Pc=52.021×e(-0.016×k) Pc=7 817.4×k(-1.195) Pc=553 315×k(-2.128) Pc=47.753×k(-0.397) K100%/×10-3 μm2 189.99 940.71 343.44 194.02 K70%/×10-3 μm2 133.00 658.50 240.41 135.81 K50%/×10-3 μm2 95.00 470.35 171.72 97.01 K30%/×10-3 μm2 7.00 282.21 103.03 58.21 P70%/MPa 6.19 3.35 4.75 6.80 P50%/MPa 11.38 5.01 9.71 7.77 P30%/MPa 20.90 9.22 28.80 9.51 -
[1] 周铂文, 陈红汉, 云露, 等. 塔里木盆地顺北地区一间房组台地碳酸盐岩异常泥质含量与断裂带距离及裂缝发育关系[J]. 地质科技通报, 2020, 39(6): 93-102. https://dzkjqb.cug.edu.cn/CN/abstract/abstract10075.shtmlZhou B W, Chen H H, Yun L, et al. Relationship between argillaceous content and distance to main faulted zone and fractures development in the platform carbonate rocks of Yijianfang Formation in Shunbei area, Tarim Basin[J]. Bulletin of Geological Science and Technology, 2020, 39(6): 93-102(in Chinese with English abstract). https://dzkjqb.cug.edu.cn/CN/abstract/abstract10075.shtml [2] 彭守涛, 何治亮, 丁勇, 等. 塔河油田托甫台地区奥陶系一间房组碳酸盐岩储层特征及主控因素[J]. 石油实验地质, 2010, 32(2): 108-114. https://www.cnki.com.cn/Article/CJFDTOTAL-SYSD201002002.htmPeng S T, He Z L, Ding Y, et al. Characteristics and major controlling factors of carbonates reservoir in the Middle Ordovician Yijianfang Formation, Tuofutai area, Tahe Oilfield[J]. Petroleum Geology & Experiment, 2010, 32(2): 108-114(in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-SYSD201002002.htm [3] 康志江, 李红凯. 塔河油田奥陶系碳酸盐岩储集体特征[J]. 大庆石油地质与开发, 2014, 33(1): 24-29. https://www.cnki.com.cn/Article/CJFDTOTAL-DQSK201401003.htmKang Z J, Li H K. Characteristics of ordovician carbonate reservoirs in Tahe Oilfield[J]. Petroleum Geology & Oilfield Development in Daqing, 2014, 33(1): 24-29(in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-DQSK201401003.htm [4] 宋志峰, 张建光. 缝洞型碳酸盐岩靶向酸压目标体分类与建模巨[J]. 地质科技通报, 2021, 40(3): 78-84. https://dzkjqb.cug.edu.cn/CN/abstract/abstract10140.shtmlSong Z F, Zhang J G. Classification and modeling of targeted fracture-cave bodies in acid fracturing[J]. Bulletin of Geological Science and Technology, 2021, 40(3): 78-84(in Chinese with English abstract). https://dzkjqb.cug.edu.cn/CN/abstract/abstract10140.shtml [5] 李成刚, 李英强. 碳酸盐岩断溶体油藏模型识别图版及其应用[J]. 大庆石油地质与开发, 2020, 39(4): 87-93. https://www.cnki.com.cn/Article/CJFDTOTAL-DQSK202004011.htmLi C G, Li Y Q. Identifying chart boards and their applications of the models for the fault arst carbonate oil reservoir[J]. Petroleum Geology & Oilfield Development in Daqing, 2020, 39(4): 87-93(in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-DQSK202004011.htm [6] 鲁新便, 胡文革, 汪彦, 等. 塔河地区碳酸盐岩断溶体油藏特征与开发实践[J]. 石油与天然气地质, 2015, 36(3): 347-355. https://www.cnki.com.cn/Article/CJFDTOTAL-SYYT201503003.htmLu X B, Hu W G, Wang Y, et al. Characteristics and development practice of fault- karst carbonate reservoirs in Tahe area, Tarim Basin[J]. Oil & Gas Geology, 2015, 36(3): 347-355(in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-SYYT201503003.htm [7] 赵佳如, 牛永斌, 王敏, 等. 塔河油田奥陶系生物扰动型碳酸盐岩储集层特征及其孔隙度计算样本检验模型[J]. 沉积学报, 2021, 39(2): 482-492. https://www.cnki.com.cn/Article/CJFDTOTAL-CJXB202102017.htmZhao J R, Niu Y B, Wang M, et al. Reservoir characteristics and porosity calculation sample inspection model of Ordovician bioturbated carbonate reservoirs in Tahe Oilfield[J]. Acta Sedimentologica Sinica, 2021, 39(2): 482-492(in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-CJXB202102017.htm [8] 程洪, 张杰, 张文彪. 断溶体储层类型识别、预测及发育模式探讨: 以塔里木盆地塔河十区TH10421单元为例[J]. 石油与天然气地质, 2020, 41(5): 996-1003. https://www.cnki.com.cn/Article/CJFDTOTAL-SYYT202005011.htmCheng H, Zhang J, Zhang W B. Discussion on identification, prediction and development models of fault-karst carbonate reservoir types: Case study of TH10421 fracture-cavity unit in tenth block of Tahe Oilfield[J]. Oil & Gas Geology, 2020, 41(5): 996-1003(in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-SYYT202005011.htm [9] 程洪, 汪彦, 鲁新便. 塔河地区深层碳酸盐岩断溶体圈闭类型及特征[J]. 石油学报, 2020, 41(3): 301-309. https://www.cnki.com.cn/Article/CJFDTOTAL-SYXB202003007.htmCheng H, Wang Y, Lu X B. Classifications and characteristics of deep carbonate fault-karst trap in Tahe area[J]. Acta Petrolei Sinica, 2020, 41(3): 301-309(in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-SYXB202003007.htm [10] 漆立新. 塔里木盆地顺北超深断溶体油藏特征与启示[J]. 中国石油勘探, 2020, 25(1): 102- 111. https://www.cnki.com.cn/Article/CJFDTOTAL-KTSY202001010.htmQi L X. Characteristics and inspiration of ultra-deep fault-karst reservoir in the Shunbei area of the Tarim Basin[J]. China Petroleum Exploration, 2020, 25(1): 102-111(in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-KTSY202001010.htm [11] 梁源. 塔河油田托甫台区一间房组油藏裂缝闭合现象分析[D]. 成都: 成都理工大学, 2014.Liang Y. Study on reservoir fracture closure in Yijianfang formation ordovician in Tahe Oilfield[D]. Chengdu: Chengdu University of Technology, 2014(in Chinese with English abstract). [12] 邱浩, 王子振, 王瑞和, 等. 单轴压力下裂缝闭合压力及其影响因素实验研究[J]. 岩石力学与工程学报, 2015, 34(增刊2): 3915-3921. https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX2015S2035.htmQiu H, Wang Z Z, Wang R H, et al. Experimental study of closure pressure of cracks and its influencing factors under uniaxial pressure[J]. Chinese Journal of Rock Mechanics and Engineering, 2015, 34(S2): 3915-3921(in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX2015S2035.htm [13] 邱浩. 应力状态对碳酸盐岩裂缝结构的影响规律研究[D]. 山东东营: 中国石油大学(华东), 2015.Qiu H. Research on the influences of stress state on the crack structure of carbonate rocks[D]. Dongying Shangdong: China University of Petroleum(Eastern China), 2015(in Chinese with English abstract). [14] 段慕白. 多场耦合作用下碳酸盐岩裂缝变形机理研究[D]. 成都: 西南石油大学, 2016.Duan M B. Multi-physics coupling in carbonate rock fracture deformation mechanism[D]. Chengdu: Southwest Petroleum University, 2016(in Chinese with English abstract). [15] 汪明丰. 马必东区块煤储层多尺度数字岩心表征[D]. 北京: 中国地质大学(北京), 2020.Wang M F. Multiscale digital core characterization of coal reservoirs in Mabidong block[D]. Beijing: China University of Geosciences, 2020(in Chinese with English abstract). [16] 赵建鹏, 崔利凯, 陈惠, 等. 基于CT扫描数字岩心的岩石微观结构定量表征方法[J]. 现代地质, 2020, 34(6): 1205-1213. https://www.cnki.com.cn/Article/CJFDTOTAL-XDDZ202006011.htmZhao J P, Cui L K, Chen H, et al. Quantitative characterization of rock microstructure by digital core based on CT scanning[J]. Geoscience, 2020, 34(6): 1205-1213(in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-XDDZ202006011.htm [17] 胡进. 基于图像处理的数字岩心重构方法研究及应用[D]. 合肥: 合肥工业大学, 2019.Hu J. Research and application of digital core reconstruction method based on image processing[D]. Hefei: Hefei University of Technology, 2019(in Chinese with English abstract). [18] 罗志鹏. 三维数字岩心可视化方法研究[D]. 湖北荆州: 长江大学, 2019.Luo Z P. Research on visualization method of 3D digital core[D]. Jingzhou Hubei: Yangtze University, 2019(in Chinese with English abstract). [19] 江峰. 三维数字岩心的三维重建方法研究[D]. 湖北荆州: 长江大学, 2019.Jiang F. A research on three-dimensional reconstruction method of three-dimensional digital core[D]. Jingzhou Hubei: Yangtze University, 2019(in Chinese with English abstract). [20] 丁健, 许光宇. 基于SIFT的二进制特征描述匹配算法[J]. 阜阳师范学院学报: 自然科学版, 2020, 37(2): 77-82. https://www.cnki.com.cn/Article/CJFDTOTAL-FYSZ202002016.htmDing J, Xu G Y. Binary feature description matching algorithm based on SIFT[J]. Journal of Fuyang Normal University: Natural Science Edition, 2020, 37(2): 77-82(in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-FYSZ202002016.htm