Citation: | Lin Xu, Zhao Xitao, Wu Zhonghai, Li Chang'an, Liu Haijin, Li Zhaoning. Source tracing elements of K-feldspars of main rivers around Bohai Bay Basin[J]. Bulletin of Geological Science and Technology, 2020, 39(6): 10-18. doi: 10.19509/j.cnki.dzkq.2020.0602 |
[1] |
杨守业.亚洲主要河流的沉积地球化学示踪研究进展[J].地球科学进展, 2006, 21(6):648-655.
|
[2] |
刘静, 张金玉, 葛玉魁, 等.构造地貌学:构造-气候-地表过程相互作用的交叉研究[J].科学通报, 2018, 63(1):3070-3088.
|
[3] |
林旭, 刘静, 彭保发, 等.青藏高原周围河流基岩和碎屑矿物低温热年代学研究进展[J].地震地质, 2017, 39(6):1091-1110.
|
[4] |
林旭, 刘静.江汉和洞庭盆地与周缘造山带盆山耦合研究进展[J].地震地质, 2019, 41(2):499-520.
|
[5] |
赵希涛, 胡道功, 吴中海, 等.长江三角洲地区晚新生代地质与环境研究进展述评[J].地质力学学报, 2017, 23(1):1-64.
|
[6] |
赵迎冬, 张永超, 王全利, 等.南堡凹陷物源体系发育特征与优质储层形成[J].地质科技情报, 2018, 37(1):128-134.
|
[7] |
蒋一鸣.西湖凹陷平湖斜坡带平湖组碎屑锆石U-Pb年龄及米兰科维奇旋回:对源-汇系统及沉积演化的约束[J].地质科技情报, 2019, 38(6):133-140.
|
[8] |
张建新, 范彩伟, 谭建财, 等.莺歌海盆地中新世沉积体系演化特征及勘探意义[J].地质科技情报, 2019, 38(6):51-59.
|
[9] |
Li S Z, Zhao G H, Dai L M, et al.Cenozoic faulting of the Bohai Bay Basin and its bearing on the destruction of the eastern North China Craton[J].Journal of Asian Earth Sciences, 2012, 47(1):80-93.
|
[10] |
吴忱, 张秀清, 马永红.华北山地地貌面与新生代构造运动[J].华北地震科学, 1996, 14(4):40-50.
|
[11] |
徐杰, 计凤桔.渤海湾盆地构造及其演化[M].北京:地震出版社, 2015
|
[12] |
陈洪云, 孙有斌.黄土高原风尘沉积的物质来源研究:回顾与展望[J].第四纪研究, 2008, 28(5):892-900.
|
[13] |
王中波, 杨守业, 李日辉, 等.黄河水系沉积物碎屑矿物组成及沉积动力环境约束[J].海洋地质与第四纪地质, 2010, 30(4):73-85.
|
[14] |
Xu Q, Yang J, Yuan G, et al.Stratigraphic sequence and episodes of the ancient Huanghe delta along the southwestern Bohai Bay since the LGM[J].Marine Geology, 2015, 367(1):69-82.
|
[15] |
Nie J S, Stevens T, Rittner M, et al.Loess plateau storage of northeastern Tibetan Plateau-derived Yellow River sediment[J].Nature Communications, 2015, 6(1):1-8.
|
[16] |
Hu Z B, Pan B T, Bridgland D, et al.The linking of the upper-middle and lower reaches of the Yellow River as a result of fluvial entrenchment[J].Quaternary Science Reviews, 2017, 166(3):324-338.
|
[17] |
Yi L, Yu H J, Ortiz J D, et al.Late Quaternary linkage of sedimentary records to three astronomical rhythms and the Asian monsoon, inferred from a coastal borehole in the south Bohai Sea, China[J].Palaeogeography, Palaeoclimatology, Palaeoecology, 2012, 329(5):101-117.
|
[18] |
Yao Z, Guo Z, Xiao G, et al.Sedimentary history of the western Bohai coastal plain since the Late Pliocene:Implications on tectonic, climatic and sea-level changes[J].Journal of Asian Earth Sciences, 2012, 54(2):192-202.
|
[19] |
Hu B Q, Li G, Li J, et al.Provenance and climate change inferred from Sr-Nd-Pb isotopes of Late Quaternary sediments in the Huanghe (Yellow River) delta, China[J].Quaternary Research, 2012, 78(3):561-571. doi: 10.1016/j.yqres.2012.07.005
|
[20] |
杨守业, 蔡进功, 李从先, 等.黄河贯通时间的新探索[J].海洋地质与第四纪地质, 2001, 21(2):15-20.
|
[21] |
盛晶瑾.渤海湾西北部晚更新世以来沉积物稀土元素特征及物源意义[D].长春: 吉林大学, 2010.
|
[22] |
韩宗珠, 衣伟虹, 李敏, 等.渤海湾北部沉积物重矿物特征及物源分析[J].中国海洋大学学报:自然科学版, 2013, 43(4):73-79.
|
[23] |
王昆山, 石学法, 蔡善武, 等.黄河口及莱州湾表层沉积物中重矿物分布与来源[J].海洋地质与第四纪地质, 2010, 30(6):1-8.
|
[24] |
金秉福, 岳伟, 王昆山.黄河、辽河和鸭绿江沉积角闪石矿物化学特征对比及物源识别[J].海洋学报, 2014, 36(4):11-21.
|
[25] |
蓝先洪, 秦亚超, 陈晓辉, 等.渤海东部晚第四纪沉积环境变化的稀土元素地球化学记录[J].海洋通报, 2016, 35(6):674-682.
|
[26] |
陈贺贺, 朱筱敏, 黄捍东, 等.基于碎屑锆石定年的饶阳凹陷蠡县斜坡沙河街组物源分析[J].地球科学, 2017, 42(11):1955-1971.
|
[27] |
Tan M, Zhu X, Liu W, et al.Sediment routing systems in the second member of the Eocene Shahejie Formation in the Liaoxi Sag, offshore Bohai Bay Basin:A synthesis from tectono-sedimentary and detrital zircon geochronological constraints[J].Marine and Petroleum Geology, 2018, 94:95-113. doi: 10.1016/j.marpetgeo.2018.04.003
|
[28] |
林旭.利用碎屑钾长石普通Pb同位素重建古嘉陵江、古长江自中新世以来的流向[D].武汉: 中国地质大学(武汉), 2011.
|
[29] |
张文, 刘勇胜, 胡兆初.微区原位LA-MC-ICP-MS铅同位素分析研究进展[J].矿物岩石地球化学通报, 2018, 37(5):812-826.
|
[30] |
Tyrrell S, Haughton P D W, Daly J S, et al.The use of the common Pb isotope composition of detrital K-feldspar grains as a provenance tool and its application to Upper Carboniferous paleodrainage, northern England[J].Journal of Sedimentary Research, 2006, 76(2):324-345. doi: 10.2110/jsr.2006.023
|
[31] |
Clift P D, Long H V, Hinton R, et al.Evolving east Asian river systems reconstructed by trace element and Pb and Nd isotope variations in modern and ancient Red River-Song Hong sediments[J].Geochemistry Geophysics Geosystems, 2008, 9(4):1-29.
|
[32] |
Alizai A, Clift P D, Giosan L, et al.Pb isotopic variability in the modern-Pleistocene Indus River system measured by ion microprobe in detrital K-feldspar grains[J].Geochimica et Cosmochimica Acta, 2011, 75(17):4771-4795. doi: 10.1016/j.gca.2011.05.039
|
[33] |
Shulaker D Z, Grove M, Hourigan J K, et al.Detrital K-feldspar Pb isotopic evaluation of extraregional sediment transported through an Eocene tectonic breach of southern California's Cretaceous batholith[J].Earth and Planetary Science Letters, 2019, 508(1):4-17.
|
[34] |
Johnson S P, Kirkland C L, Evans N J, et al.The complexity of sediment recycling as revealed by common Pb isotopes in K-feldspar[J].Geoscience Frontiers, 2018, 9(5):1515-1527. doi: 10.1016/j.gsf.2018.03.009
|
[35] |
Xu Y M, Jiang S Y.In-situ analysis of trace elements and Sr-Pb isotopes of K-feldspars from Tongshankou Cu-Mo deposit, SE Hubei Province, China:Insights into early potassic alteration of the porphyry mineralization system[J].Terra Nova, 2017, 29(6):343-355. doi: 10.1111/ter.12287
|
[36] |
Zong K Q, Klemd R, Yuan Y, et al.The assembly of Rodinia:The correlation of Early Neoproterozoic (ca.900 Ma) high-grade metamorphism and continental arc formation in the southern Beishan Orogen, southern Central Asian Orogenic Belt(CAOB)[J].Precambrian Research, 2017, 290:32-48. doi: 10.1016/j.precamres.2016.12.010
|
[37] |
Hu Z C, Zhang W, Liu Y S, et al."Wave" signal smoothing and mercury removing device for laser ablation quadrupole and multiple collector ICP-MS analysis:Application to lead isotope analysis[J].Analytical Chemistry, 2015, 87:1152-1157. doi: 10.1021/ac503749k
|
[38] |
Liu Y S, Hu Z C, Gao S, et al.In situ analysis of major and trace elements of anhydrous minerals by LA-ICP-MS without applying an internalstandard[J].Chemical Geology, 2008, 257:34-43. doi: 10.1016/j.chemgeo.2008.08.004
|
[39] |
张宏飞, 高山.地球化学[M].北京:地质出版社, 2012.
|
[40] |
Sun J M.Nd and Sr isotopic variations in Chinese eolian deposits during the past 8 Ma:Implications for provenance change[J].Earth and Planetary Science Letters, 2005, 240(2):454-466. doi: 10.1016/j.epsl.2005.09.019
|
[41] |
Sun J M, Zhu R X.Temporal variations in Pb isotopes and trace element concentrations within Chinese eolian deposits during the past 8 Ma:Implications for provenance change[J].Earth and Planetary Science Letters, 2010, 290(3):438-447.
|
[42] |
Sun Y B, Tada R, Chen J, et al.Tracing the provenance of fine-grained dust deposited on the central Chinese Loess Plateau[J].Geophysical Research Letters, 2008, 35(1):1-5.
|
[43] |
Ferrat M, Weiss D J, Strekopytov S, et al.Improved provenance tracing of Asian dust sources using rare earth elements and selected trace elements for palaeomonsoon studies on the eastern Tibetan Plateau[J].Geochimica et Cosmochimica Acta, 2011, 75:6374-6399. doi: 10.1016/j.gca.2011.08.025
|
[44] |
Zhao W C, Liu L W, Chen J, et al.Geochemical characterization of major elements in desert sediments and implications for the Chinese loess source[J].Science China Earth Sciences, 2019, 62(9):1-13.
|