Volume 41 Issue 2
Mar.  2022
Turn off MathJax
Article Contents
Huang Faming, Hu Songyan, Yan Xueya, Li Ming, Wang Junyu, Li Wenbin, Guo Zizheng, Fan Wenyan. Landslide susceptibility prediction and identification of its main environmental factors based on machine learning models[J]. Bulletin of Geological Science and Technology, 2022, 41(2): 79-90. doi: 10.19509/j.cnki.dzkq.2021.0087
Citation: Huang Faming, Hu Songyan, Yan Xueya, Li Ming, Wang Junyu, Li Wenbin, Guo Zizheng, Fan Wenyan. Landslide susceptibility prediction and identification of its main environmental factors based on machine learning models[J]. Bulletin of Geological Science and Technology, 2022, 41(2): 79-90. doi: 10.19509/j.cnki.dzkq.2021.0087

Landslide susceptibility prediction and identification of its main environmental factors based on machine learning models

doi: 10.19509/j.cnki.dzkq.2021.0087
  • Received Date: 08 Apr 2021
  • The modelling processes and uncertainties of various machine learning models for landslide susceptibility prediction (LSP) are different, and effectively identifying the main conditioning factors of landslide susceptibility is of great significance. Aiming at these problems, this study aims to discuss the LSP processes and the uncertainties of landslide susceptibility based on machine learning models, namely, support vector machine (SVM) and random forest (RF), and then to innovatively propose the "weighted mean method" for calculating more accurate landslide main control factors. First, the landslide inventories and 10 basic environmental factors of Yanchang County in Shaanxi Province are obtained, and the frequency ratios (FRs) of the environmental factors are taken as the input variables of the SVM and RF models.Then, the landslide and randomly selected nonlandslide samples are divided into model training and testing datasets. Furthermore, the trained RF and SVM models are used to predict the landslide susceptibility and draw the landslide susceptibility prediction (LSP) map.Finally, the uncertainties of LSP modelling are evaluated by the receiver operating characteristic (ROC) curve, mean value and standard deviation, and the main landslide control factors are calculated.The results show that ① Machine learning models can effectively predict the susceptibility of regional landslides. The accuracy of RF in LSP is higher, and its uncertainties are lower than those of SVM. As a whole, the landslide susceptibility distribution rules of the two models are similar.②The main control factors of landslide susceptibility in Yanchang County calculated by the weighted mean method are slope, elevation and lithology.③Case studies and literature reviews show that the RF model is a more reliable susceptibility model than other types of machine learning models.

     

  • loading
  • [1]
    郭子正, 殷坤龙, 唐扬, 等. 库水位下降及降雨作用下麻柳林滑坡稳定性评价与预测[J]. 地质科技情报, 2017, 36(4): 260-265, 270. https://www.cnki.com.cn/Article/CJFDTOTAL-DZKQ201704035.htm

    Guo Z Z, Yin K L, Tang Y, et al. Stability evaluation and prediction of maliulin landslide under reservoir water level decline and rainfall[J]. Geological Science and Technology Information, 2017, 36(4): 260-265, 270(in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-DZKQ201704035.htm
    [2]
    张俊, 殷坤龙, 王佳佳, 等. 三峡库区万州区滑坡灾害易发性评价研究[J]. 岩石力学与工程学报, 2016, 35(2): 284-296. https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX201404018.htm

    Zhang J, Yin K L, Wang J J, et al. Evaluation of landslide susceptibility for Wanzhou district of Three Gorges Reservoir[J]. Chinese Journal of Rock Mechanics and Engineering, 2016, 35(2): 284-296(in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX201404018.htm
    [3]
    郭天颂, 张菊清, 韩煜, 等. 基于粒子群优化支持向量机的延长县滑坡易发性评价[J]. 地质科技情报, 2019, 38(3): 236-243. https://www.cnki.com.cn/Article/CJFDTOTAL-DZKQ201903025.htm

    Guo T S, Zhang J Q, Han Y, et al. Evaluation of landslide susceptibility in Yanchang County based on particle swarm optimization-based support vector machine[J]. Geological Science and Technology Information, 2019, 38(3): 236-243(in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-DZKQ201903025.htm
    [4]
    武雪玲, 杨经宇, 牛瑞卿. 一种结合SMOTE和卷积神经网络的滑坡易发性评价方法[J]. 武汉大学学报: 信息科学版, 2020, 45(8): 1223-1232. https://www.cnki.com.cn/Article/CJFDTOTAL-WHCH202008013.htm

    Wu X L, Yang J Y, Niu R Q. A Landslide susceptibility assessment method using SMOTE and convolutional neural network[J]. Geomatics and Information Science of Wuhan University, 2020, 45(8): 1223-1232(in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-WHCH202008013.htm
    [5]
    Dou J, Yunus A P, Bui D T, et al. Assessment of advanced random forest and decision tree algorithms for modeling rainfall-induced landslide susceptibility in the Izu-Oshima Volcanic Island, Japan[J]. Science of the Total Environment, 2019, 662: 332-346. doi: 10.1016/j.scitotenv.2019.01.221
    [6]
    Tsangaratos P, Ilia I, Hong H Y, et al. Applying information theory and GIS-based quantitative methods to produce landslide susceptibility maps in Nancheng County, China[J]. Landslides, 2017, 14(3): 1091-1111. doi: 10.1007/s10346-016-0769-4
    [7]
    Reichenbach P, Rossi M, Malamud B D, et al. A review of statistically-based landslide susceptibility models[J]. Earth-Science Reviews, 2018, 180: 60-91. doi: 10.1016/j.earscirev.2018.03.001
    [8]
    Zezere J L, Pereira S, Melo R, et al. Mapping landslide susceptibility using data-driven methods[J]. Science of the Total Environment, 2017, 589: 250-267. doi: 10.1016/j.scitotenv.2017.02.188
    [9]
    Zhu L, Huang L H, Fan L Y, et al. Landslide susceptibility prediction modeling based on remote sensing and a novel deep learning algorithm of a cascade-parallel recurrent neural network[J]. Sensors, 2020, 20(6): 1576. doi: 10.3390/s20061576
    [10]
    Chen W, Chen X, Peng J B, et al. Landslide susceptibility modeling based on ANFIS with teaching-learning-based optimization and satin bowerbird optimizer[J]. Geoscience Frontiers, 2021, 12(1): 93-107. doi: 10.1016/j.gsf.2020.07.012
    [11]
    Bui D T, Tsangaratos P, Nguyen V T, et al. Comparing the prediction performance of a Deep Learning Neural Network model with conventional machine learning models in landslide susceptibility assessment[J]. Catena, 2020, 188: 104426. doi: 10.1016/j.catena.2019.104426
    [12]
    胡涛, 樊鑫, 王硕, 等. 基于逻辑回归模型和3S技术的思南县滑坡易发性评价[J]. 地质科技通报, 2020, 39(2): 113-121. doi: 10.19509/j.cnki.dzkq.2020.0212

    Hu T, Fan X, Wang S, et al. Landslide susceptibility evaluation of Sinan County using logistics regression model and 3S technology[J]. Bulletin of Geological Science and Technology, 2020, 39(2): 113-121(in Chinese with English abstract). doi: 10.19509/j.cnki.dzkq.2020.0212
    [13]
    冯杭建, 周爱国, 俞剑君, 等. 浙西梅雨滑坡易发性评价模型对比[J]. 地球科学: 中国地质大学学报, 2016, 41(3): 403-415. https://www.cnki.com.cn/Article/CJFDTOTAL-DQKX201603006.htm

    Feng H J, Zhou A G, Yu J J, et al. A Comparative study on plum-rain-triggered landslide susceptibility assessment models in west Zhejiang Province[J]. Earth Science: Journal of China University of Geosciences, 2016, 41(3): 403-415(in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-DQKX201603006.htm
    [14]
    Li D Y, Huang F M, Yan L X, et al. Landslide susceptibility prediction using particle-swarm-optimized multilayer perceptron: Comparisons with multilayer-perceptron-only, BP neural network, and information value models[J]. Applied Sciences, 2019, 9(18): 3664. doi: 10.3390/app9183664
    [15]
    Merghadi A, Yunus A P, Dou J, et al. Machine learning methods for landslide susceptibility studies: A comparative overview of algorithm performance[J]. Earth-Science Reviews, 2020, 7(20): 10325.
    [16]
    郭子正, 殷坤龙, 付圣, 等. 基于GIS与WOE-BP模型的滑坡易发性评价[J]. 地球科学, 2019, 44(12): 4299-4312. https://www.cnki.com.cn/Article/CJFDTOTAL-DQKX201912040.htm

    Guo Z Z, Yin K L, Fu S, et al. Evaluation of landslide susceptibility based on GIS and WOE-BP model[J]. Earth Science, 2019, 44(12): 4299-4312(in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-DQKX201912040.htm
    [17]
    Huang F M, Cao Z S, Jiang S H, et al. Landslide susceptibility prediction based on a semi-supervised multiple-layer perceptron model[J]. Landslides, 2020, 17(12): 2919-2930. doi: 10.1007/s10346-020-01473-9
    [18]
    马瑶, 赵江南. 机器学习方法在矿产资源定量预测应用研究进展[J]. 地质科技通报, 2021, 40(1): 132-141. doi: 10.19509/j.cnki.dzkq.2021.0108

    Ma Y, Zhao J N. Advances in the application of machine learning methods in mineral prospectivity mapping[J]. Bulletin of Geological Science and Technology, 2021, 40(1): 132-141(in Chinese with English abstract). doi: 10.19509/j.cnki.dzkq.2021.0108
    [19]
    黄发明, 殷坤龙, 张桂荣, 等. 基于相空间重构和小波分析-粒子群向量机的滑坡地下水位预测[J]. 地球科学: 中国地质大学学报, 2015, 40(7): 1254-1265. https://www.cnki.com.cn/Article/CJFDTOTAL-DQKX201507013.htm

    Huang F M, Yin K L, Zhang G R, et al. Landslide groundwater level time series prediction based on phase space reconstruction and wavelet analysis-support vector machine optimized by PSO algorithm[J]. Earth Science: Journal of China University of Geosciences, 2015, 40(7): 1254-1265(in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-DQKX201507013.htm
    [20]
    Huang F M, Yin K L, Zhang G R, et al. Prediction of groundwater level in landslide using multivariable PSO-SVM model[J]. Journal of Zhejiang University: Engineering Science Edition, 2015, 49(6): 1193-1200.
    [21]
    杨永刚, 殷坤龙, 赵海燕, 等. 基于C5.0决策树-快速聚类模型的万州区库岸段乡镇滑坡易发性区划[J]. 地质科技情报, 2019, 38(6): 189-197. https://www.cnki.com.cn/Article/CJFDTOTAL-DZKQ201906023.htm

    Yang Y G, Yin K L, Zhao H Y, et al. Landslide susceptibility evaluation for township units of bank section in Wanzhou district based on C5.0 decision tree and K-means cluster model[J]. Geological Science and Technology Information, 2019, 38(6): 189-197(in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-DZKQ201906023.htm
    [22]
    吴润泽, 胡旭东, 梅红波, 等. 基于随机森林的滑坡空间易发性评价: 以三峡库区湖北段为例[J]. 地球科学, 2021, 46(1): 321-330. https://www.cnki.com.cn/Article/CJFDTOTAL-DQKX202101025.htm

    Wu R Z, Hu X D, Mei H B, et al. Spatial susceptibility assessment of landslides based on random forest: A case study from Hubei section in the Three Gorges Reservoir area[J]. Earth Science, 2021, 46(1): 321-330(in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-DQKX202101025.htm
    [23]
    张书豪, 吴光. 随机森林与GIS的泥石流易发性及可靠性[J]. 地球科学, 2019, 44(9): 3115-3134. https://www.cnki.com.cn/Article/CJFDTOTAL-DQKX201909025.htm

    Zhang S H, Wu G. Debris flow susceptibility and its reliability based on random forest and GIS[J]. Earth Science, 2019, 44(9): 3115-3134(in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-DQKX201909025.htm
    [24]
    Ahmed B. Landslide susceptibility mapping using multi-criteria evaluation techniques in Chittagong metropolitan area, Bangladesh[J]. Landslides, 2015, 12(6): 1077-1095.
    [25]
    Chang Z L, Du Z, Zhang F, et al. Landslide susceptibility prediction based on remote sensing images and GIS: Comparisons of supervised and unsupervised machine learning models[J]. Remote Sensing, 2020, 12(3): 502.
    [26]
    Huang Y, Zhao L. Review on landslide susceptibility mapping using support vector machines[J]. Catena, 2018, 165: 520-529.
    [27]
    Luo X G, Lin F K, Chen Y H, et al. Coupling logistic model tree and random subspace to predict the landslide susceptibility areas with considering the uncertainty of environmental features[J]. Scientific Reports, 2019, 9(1): 15369.
    [28]
    赵忠国, 张峰, 郑江华. 多元自适应回归样条法的滑坡敏感性评价[J]. 武汉大学学报: 信息科学版, 2021, 46(3): 442-450. https://www.cnki.com.cn/Article/CJFDTOTAL-WHCH202103018.htm

    Zhao Z G, Zhang F, Zheng J H. Evaluation of landslide susceptibility by multiple adaptive regression spline method[J]. Geomatics and Information Science of Wuhan University, 2021, 46(3): 442-450(in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-WHCH202103018.htm
    [29]
    屈新星, 李道安, 何云玲, 等. 基于MaxEnt模型的滑坡易发性评价: 以攀枝花市为例[J]. 水土保持研究, 2021, 28(2): 224-229. https://www.cnki.com.cn/Article/CJFDTOTAL-STBY202102034.htm

    Qu X X, Li D A, He Y L, et al. Evaluation of landslide susceptibility based on MaxEnt model: Taking Panzhihua City as an example[J]. Research of Soil and Water Conservation, 2021, 28(2): 224-229(in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-STBY202102034.htm
    [30]
    Chang M, Zhou Y, Zhou C, et al. Coseismic landslides induced by the 2018 Mw 6.6 Iburi, Japan, Earthquake: Spatial distribution, key factors weight, and susceptibility regionalization[J]. Landslides, 2021, 18(2): 755-772.
    [31]
    Huang F M, Chen J W, Du Z, et al. Landslide susceptibility prediction considering regional soil erosion based on machine-learning models[J]. ISPRS International Journal of Geo-Information, 2020, 9(6): 377.
    [32]
    张玘恺, 凌斯祥, 李晓宁, 等. 九寨沟县滑坡灾害易发性快速评估模型对比研究[J]. 岩石力学与工程学报, 2020, 39(8): 1595-1610. https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX202008009.htm

    Zhang Q K, Ling S X, Li X N, et al. Comparison of landslide susceptibility mapping rapid assessment models in Jiuzhaigou County, Sichuan Province, China[J]. Chinese Journal of Rock Mechanics and Engineering, 2020, 39(8): 1595-1610(in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX202008009.htm
    [33]
    Huang F M, Wang Y, Dong Z L, et al. Regional landslide susceptibility mapping based on grey relational degree model[J]. Earth Science, 2019, 44(2): 664-676.
    [34]
    Liu W P, Luo X Y, Huang F M, et al. Prediction of soil water retention curve using Bayesian updating from limited measurement data[J]. Applied Mathematical Modelling, 2019, 76: 380-395.
    [35]
    刘坚, 李树林, 陈涛. 基于优化随机森林模型的滑坡易发性评价[J]. 武汉大学学报: 信息科学版, 2018, 43(7): 1085-1091. https://www.cnki.com.cn/Article/CJFDTOTAL-WHCH201807017.htm

    Liu J, Li S L, Chen T. Landslide susceptibility assesment based on optimized random forest model[J]. Geomatics and Information Science of Wuhan University, 2018, 43(7): 1085-1091(in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-WHCH201807017.htm
    [36]
    Park S, Kim J. Landslide susceptibility mapping based on random forest and boosted regression tree models, and a comparison of their performance[J]. Applied Sciences, 2019, 9(5): 942.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article Views(963) PDF Downloads(183) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return