Citation: | Huang Faming, Hu Songyan, Yan Xueya, Li Ming, Wang Junyu, Li Wenbin, Guo Zizheng, Fan Wenyan. Landslide susceptibility prediction and identification of its main environmental factors based on machine learning models[J]. Bulletin of Geological Science and Technology, 2022, 41(2): 79-90. doi: 10.19509/j.cnki.dzkq.2021.0087 |
[1] |
郭子正, 殷坤龙, 唐扬, 等. 库水位下降及降雨作用下麻柳林滑坡稳定性评价与预测[J]. 地质科技情报, 2017, 36(4): 260-265, 270. https://www.cnki.com.cn/Article/CJFDTOTAL-DZKQ201704035.htm
Guo Z Z, Yin K L, Tang Y, et al. Stability evaluation and prediction of maliulin landslide under reservoir water level decline and rainfall[J]. Geological Science and Technology Information, 2017, 36(4): 260-265, 270(in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-DZKQ201704035.htm
|
[2] |
张俊, 殷坤龙, 王佳佳, 等. 三峡库区万州区滑坡灾害易发性评价研究[J]. 岩石力学与工程学报, 2016, 35(2): 284-296. https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX201404018.htm
Zhang J, Yin K L, Wang J J, et al. Evaluation of landslide susceptibility for Wanzhou district of Three Gorges Reservoir[J]. Chinese Journal of Rock Mechanics and Engineering, 2016, 35(2): 284-296(in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX201404018.htm
|
[3] |
郭天颂, 张菊清, 韩煜, 等. 基于粒子群优化支持向量机的延长县滑坡易发性评价[J]. 地质科技情报, 2019, 38(3): 236-243. https://www.cnki.com.cn/Article/CJFDTOTAL-DZKQ201903025.htm
Guo T S, Zhang J Q, Han Y, et al. Evaluation of landslide susceptibility in Yanchang County based on particle swarm optimization-based support vector machine[J]. Geological Science and Technology Information, 2019, 38(3): 236-243(in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-DZKQ201903025.htm
|
[4] |
武雪玲, 杨经宇, 牛瑞卿. 一种结合SMOTE和卷积神经网络的滑坡易发性评价方法[J]. 武汉大学学报: 信息科学版, 2020, 45(8): 1223-1232. https://www.cnki.com.cn/Article/CJFDTOTAL-WHCH202008013.htm
Wu X L, Yang J Y, Niu R Q. A Landslide susceptibility assessment method using SMOTE and convolutional neural network[J]. Geomatics and Information Science of Wuhan University, 2020, 45(8): 1223-1232(in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-WHCH202008013.htm
|
[5] |
Dou J, Yunus A P, Bui D T, et al. Assessment of advanced random forest and decision tree algorithms for modeling rainfall-induced landslide susceptibility in the Izu-Oshima Volcanic Island, Japan[J]. Science of the Total Environment, 2019, 662: 332-346. doi: 10.1016/j.scitotenv.2019.01.221
|
[6] |
Tsangaratos P, Ilia I, Hong H Y, et al. Applying information theory and GIS-based quantitative methods to produce landslide susceptibility maps in Nancheng County, China[J]. Landslides, 2017, 14(3): 1091-1111. doi: 10.1007/s10346-016-0769-4
|
[7] |
Reichenbach P, Rossi M, Malamud B D, et al. A review of statistically-based landslide susceptibility models[J]. Earth-Science Reviews, 2018, 180: 60-91. doi: 10.1016/j.earscirev.2018.03.001
|
[8] |
Zezere J L, Pereira S, Melo R, et al. Mapping landslide susceptibility using data-driven methods[J]. Science of the Total Environment, 2017, 589: 250-267. doi: 10.1016/j.scitotenv.2017.02.188
|
[9] |
Zhu L, Huang L H, Fan L Y, et al. Landslide susceptibility prediction modeling based on remote sensing and a novel deep learning algorithm of a cascade-parallel recurrent neural network[J]. Sensors, 2020, 20(6): 1576. doi: 10.3390/s20061576
|
[10] |
Chen W, Chen X, Peng J B, et al. Landslide susceptibility modeling based on ANFIS with teaching-learning-based optimization and satin bowerbird optimizer[J]. Geoscience Frontiers, 2021, 12(1): 93-107. doi: 10.1016/j.gsf.2020.07.012
|
[11] |
Bui D T, Tsangaratos P, Nguyen V T, et al. Comparing the prediction performance of a Deep Learning Neural Network model with conventional machine learning models in landslide susceptibility assessment[J]. Catena, 2020, 188: 104426. doi: 10.1016/j.catena.2019.104426
|
[12] |
胡涛, 樊鑫, 王硕, 等. 基于逻辑回归模型和3S技术的思南县滑坡易发性评价[J]. 地质科技通报, 2020, 39(2): 113-121. doi: 10.19509/j.cnki.dzkq.2020.0212
Hu T, Fan X, Wang S, et al. Landslide susceptibility evaluation of Sinan County using logistics regression model and 3S technology[J]. Bulletin of Geological Science and Technology, 2020, 39(2): 113-121(in Chinese with English abstract). doi: 10.19509/j.cnki.dzkq.2020.0212
|
[13] |
冯杭建, 周爱国, 俞剑君, 等. 浙西梅雨滑坡易发性评价模型对比[J]. 地球科学: 中国地质大学学报, 2016, 41(3): 403-415. https://www.cnki.com.cn/Article/CJFDTOTAL-DQKX201603006.htm
Feng H J, Zhou A G, Yu J J, et al. A Comparative study on plum-rain-triggered landslide susceptibility assessment models in west Zhejiang Province[J]. Earth Science: Journal of China University of Geosciences, 2016, 41(3): 403-415(in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-DQKX201603006.htm
|
[14] |
Li D Y, Huang F M, Yan L X, et al. Landslide susceptibility prediction using particle-swarm-optimized multilayer perceptron: Comparisons with multilayer-perceptron-only, BP neural network, and information value models[J]. Applied Sciences, 2019, 9(18): 3664. doi: 10.3390/app9183664
|
[15] |
Merghadi A, Yunus A P, Dou J, et al. Machine learning methods for landslide susceptibility studies: A comparative overview of algorithm performance[J]. Earth-Science Reviews, 2020, 7(20): 10325.
|
[16] |
郭子正, 殷坤龙, 付圣, 等. 基于GIS与WOE-BP模型的滑坡易发性评价[J]. 地球科学, 2019, 44(12): 4299-4312. https://www.cnki.com.cn/Article/CJFDTOTAL-DQKX201912040.htm
Guo Z Z, Yin K L, Fu S, et al. Evaluation of landslide susceptibility based on GIS and WOE-BP model[J]. Earth Science, 2019, 44(12): 4299-4312(in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-DQKX201912040.htm
|
[17] |
Huang F M, Cao Z S, Jiang S H, et al. Landslide susceptibility prediction based on a semi-supervised multiple-layer perceptron model[J]. Landslides, 2020, 17(12): 2919-2930. doi: 10.1007/s10346-020-01473-9
|
[18] |
马瑶, 赵江南. 机器学习方法在矿产资源定量预测应用研究进展[J]. 地质科技通报, 2021, 40(1): 132-141. doi: 10.19509/j.cnki.dzkq.2021.0108
Ma Y, Zhao J N. Advances in the application of machine learning methods in mineral prospectivity mapping[J]. Bulletin of Geological Science and Technology, 2021, 40(1): 132-141(in Chinese with English abstract). doi: 10.19509/j.cnki.dzkq.2021.0108
|
[19] |
黄发明, 殷坤龙, 张桂荣, 等. 基于相空间重构和小波分析-粒子群向量机的滑坡地下水位预测[J]. 地球科学: 中国地质大学学报, 2015, 40(7): 1254-1265. https://www.cnki.com.cn/Article/CJFDTOTAL-DQKX201507013.htm
Huang F M, Yin K L, Zhang G R, et al. Landslide groundwater level time series prediction based on phase space reconstruction and wavelet analysis-support vector machine optimized by PSO algorithm[J]. Earth Science: Journal of China University of Geosciences, 2015, 40(7): 1254-1265(in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-DQKX201507013.htm
|
[20] |
Huang F M, Yin K L, Zhang G R, et al. Prediction of groundwater level in landslide using multivariable PSO-SVM model[J]. Journal of Zhejiang University: Engineering Science Edition, 2015, 49(6): 1193-1200.
|
[21] |
杨永刚, 殷坤龙, 赵海燕, 等. 基于C5.0决策树-快速聚类模型的万州区库岸段乡镇滑坡易发性区划[J]. 地质科技情报, 2019, 38(6): 189-197. https://www.cnki.com.cn/Article/CJFDTOTAL-DZKQ201906023.htm
Yang Y G, Yin K L, Zhao H Y, et al. Landslide susceptibility evaluation for township units of bank section in Wanzhou district based on C5.0 decision tree and K-means cluster model[J]. Geological Science and Technology Information, 2019, 38(6): 189-197(in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-DZKQ201906023.htm
|
[22] |
吴润泽, 胡旭东, 梅红波, 等. 基于随机森林的滑坡空间易发性评价: 以三峡库区湖北段为例[J]. 地球科学, 2021, 46(1): 321-330. https://www.cnki.com.cn/Article/CJFDTOTAL-DQKX202101025.htm
Wu R Z, Hu X D, Mei H B, et al. Spatial susceptibility assessment of landslides based on random forest: A case study from Hubei section in the Three Gorges Reservoir area[J]. Earth Science, 2021, 46(1): 321-330(in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-DQKX202101025.htm
|
[23] |
张书豪, 吴光. 随机森林与GIS的泥石流易发性及可靠性[J]. 地球科学, 2019, 44(9): 3115-3134. https://www.cnki.com.cn/Article/CJFDTOTAL-DQKX201909025.htm
Zhang S H, Wu G. Debris flow susceptibility and its reliability based on random forest and GIS[J]. Earth Science, 2019, 44(9): 3115-3134(in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-DQKX201909025.htm
|
[24] |
Ahmed B. Landslide susceptibility mapping using multi-criteria evaluation techniques in Chittagong metropolitan area, Bangladesh[J]. Landslides, 2015, 12(6): 1077-1095.
|
[25] |
Chang Z L, Du Z, Zhang F, et al. Landslide susceptibility prediction based on remote sensing images and GIS: Comparisons of supervised and unsupervised machine learning models[J]. Remote Sensing, 2020, 12(3): 502.
|
[26] |
Huang Y, Zhao L. Review on landslide susceptibility mapping using support vector machines[J]. Catena, 2018, 165: 520-529.
|
[27] |
Luo X G, Lin F K, Chen Y H, et al. Coupling logistic model tree and random subspace to predict the landslide susceptibility areas with considering the uncertainty of environmental features[J]. Scientific Reports, 2019, 9(1): 15369.
|
[28] |
赵忠国, 张峰, 郑江华. 多元自适应回归样条法的滑坡敏感性评价[J]. 武汉大学学报: 信息科学版, 2021, 46(3): 442-450. https://www.cnki.com.cn/Article/CJFDTOTAL-WHCH202103018.htm
Zhao Z G, Zhang F, Zheng J H. Evaluation of landslide susceptibility by multiple adaptive regression spline method[J]. Geomatics and Information Science of Wuhan University, 2021, 46(3): 442-450(in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-WHCH202103018.htm
|
[29] |
屈新星, 李道安, 何云玲, 等. 基于MaxEnt模型的滑坡易发性评价: 以攀枝花市为例[J]. 水土保持研究, 2021, 28(2): 224-229. https://www.cnki.com.cn/Article/CJFDTOTAL-STBY202102034.htm
Qu X X, Li D A, He Y L, et al. Evaluation of landslide susceptibility based on MaxEnt model: Taking Panzhihua City as an example[J]. Research of Soil and Water Conservation, 2021, 28(2): 224-229(in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-STBY202102034.htm
|
[30] |
Chang M, Zhou Y, Zhou C, et al. Coseismic landslides induced by the 2018 Mw 6.6 Iburi, Japan, Earthquake: Spatial distribution, key factors weight, and susceptibility regionalization[J]. Landslides, 2021, 18(2): 755-772.
|
[31] |
Huang F M, Chen J W, Du Z, et al. Landslide susceptibility prediction considering regional soil erosion based on machine-learning models[J]. ISPRS International Journal of Geo-Information, 2020, 9(6): 377.
|
[32] |
张玘恺, 凌斯祥, 李晓宁, 等. 九寨沟县滑坡灾害易发性快速评估模型对比研究[J]. 岩石力学与工程学报, 2020, 39(8): 1595-1610. https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX202008009.htm
Zhang Q K, Ling S X, Li X N, et al. Comparison of landslide susceptibility mapping rapid assessment models in Jiuzhaigou County, Sichuan Province, China[J]. Chinese Journal of Rock Mechanics and Engineering, 2020, 39(8): 1595-1610(in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX202008009.htm
|
[33] |
Huang F M, Wang Y, Dong Z L, et al. Regional landslide susceptibility mapping based on grey relational degree model[J]. Earth Science, 2019, 44(2): 664-676.
|
[34] |
Liu W P, Luo X Y, Huang F M, et al. Prediction of soil water retention curve using Bayesian updating from limited measurement data[J]. Applied Mathematical Modelling, 2019, 76: 380-395.
|
[35] |
刘坚, 李树林, 陈涛. 基于优化随机森林模型的滑坡易发性评价[J]. 武汉大学学报: 信息科学版, 2018, 43(7): 1085-1091. https://www.cnki.com.cn/Article/CJFDTOTAL-WHCH201807017.htm
Liu J, Li S L, Chen T. Landslide susceptibility assesment based on optimized random forest model[J]. Geomatics and Information Science of Wuhan University, 2018, 43(7): 1085-1091(in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-WHCH201807017.htm
|
[36] |
Park S, Kim J. Landslide susceptibility mapping based on random forest and boosted regression tree models, and a comparison of their performance[J]. Applied Sciences, 2019, 9(5): 942.
|