Volume 40 Issue 5
Sep.  2021
Turn off MathJax
Article Contents
Wang Liang, Zhao Hongyan, Qiu Chunguang, Zou Yaoyao, Zheng Chenyu, Yang Chaoqun, Shen Chuanbo. Cenozoic tectonic evolution and dynamics of Turkana Depression, East African Rift[J]. Bulletin of Geological Science and Technology, 2021, 40(5): 151-161. doi: 10.19509/j.cnki.dzkq.2021.0512
Citation: Wang Liang, Zhao Hongyan, Qiu Chunguang, Zou Yaoyao, Zheng Chenyu, Yang Chaoqun, Shen Chuanbo. Cenozoic tectonic evolution and dynamics of Turkana Depression, East African Rift[J]. Bulletin of Geological Science and Technology, 2021, 40(5): 151-161. doi: 10.19509/j.cnki.dzkq.2021.0512

Cenozoic tectonic evolution and dynamics of Turkana Depression, East African Rift

doi: 10.19509/j.cnki.dzkq.2021.0512
  • Received Date: 13 Jun 2021
  • As a typical continental rift at the embryonic stage of the Wilson cycle, the East African Rift System (EARS) is a natural place for studying plate tectonic kinematics and dynamics. The Turkana area of the EARS is of special interest science, which has been influenced by pre-existing fabrics and Mesozoic rift activities. The evolution of EARS has important significance for understanding and perfecting the evolution process of continental rifts. Based on the collected low-temperature thermochronometer study results, drilling and field outcrop data, combined with seismic data, through comprehensive analysis of rift activity time and fault activity rate analysis, this study redefined the rift evolution sequence in Turkana area, and the Cenozoic rift activity in the study area can be divided into four stages of evolution. The characteristics of the evolution of the study area are summarized as follows: early stage rift began in the south and later stage in the north, first wide rift and later narrow rift, moving to the eastward. The rift evolution is generally controlled by the combined action of pre-existing fabrics and mantle plume activity. The migration of mantle activities not only affects the migration of volcanoes and rift activities, but also may change the development pattern.

     

  • loading
  • [1]
    Chorowicz J. The East African Rift System[J]. Journal of African Earth Sciences, 2005, 43(1/3): 379-410.
    [2]
    [3]
    Boone S C, Kohn B P, Gleadow A J W, et al. Birth of the East African Rift System: Nucleation of magmatism and strain in the Turkana Depression[J]. Geology, 2019, 47(9): 886-890. doi: 10.1130/G46468.1
    [4]
    Morley C K, Ngenoh D K, Ego J K. Introduction to the East African Rift System[J]. AAPG Studies in Geology# 44, 1999, 1: 1-18. http://archives.datapages.com/data/specpubs/study44/st44ch01/ch1.htm
    [5]
    Macgregor D. History of the development of the East African Rift System: A series of interpreted maps through time[J]. Journal of African Earth Sciences, 2015, 101: 232-252. doi: 10.1016/j.jafrearsci.2014.09.016
    [6]
    Morley C K. Early syn-rift igneous dike patterns, northern Kenya Rift (Turkana, Kenya): Implications for local and regional stresses, tectonics, and magma-structure interactions[J]. Geosphere, 2020, 16(3): 890-918. doi: 10.1130/GES02107.1
    [7]
    Simon B, Guillocheau F, Robin C, et al. Deformation and sedimentary evolution of the Lake Albert Rift (Uganda, East African Rift System)[J]. Marine and Petroleum Geology, 2017, 86: 17-37. doi: 10.1016/j.marpetgeo.2017.05.006
    [8]
    Corti G. Evolution and characteristics of continental rifting: Analog modeling-inspired view and comparison with examples from the East African Rift System[J]. Tectonophysics, 2012, 522: 1-33. http://www.sciencedirect.com/science/article/pii/S0040195111002265
    [9]
    Aanyu K, Koehn D. Influence of pre-existing fabrics on fault kinematics and rift geometry of interacting segments: Analogue models based on the Albertine Rift (Uganda), Western Branch-East African Rift System[J]. Journal of African Earth Sciences, 2011, 59(2/3): 168-184. http://www.sciencedirect.com/science/article/pii/S1464343X10001998
    [10]
    Koptev A, Burov E, Calais E, et al. Contrasted continental rifting via plume-craton interaction: Applications to Central East African Rift[J]. Geoscience Frontiers, 2016, 7(2): 221-236. doi: 10.1016/j.gsf.2015.11.002
    [11]
    Brune S. Rifts and rifted margins: A review of geodynamic processes and natural hazards[J]. Plate Boundaries and Natural Hazards, 2016, 219: 13-37. http://media.wiley.com/product_data/excerpt/78/11190539/1119053978-24.pdf
    [12]
    郭曦泽, 侯贵廷. 东非裂谷系西支(湖区)油气资源潜力评价与分析[J]. 地球科学前沿, 2014, 4(2): 94-103.

    Guo X Z, Hou G T. The assessment and analysis of the potential of oil and gas resources in western branch (lakes) of the East African Rift[J]. Frontiers of Earth Science, 2014, 4(2): 94-103(in Chinese with English abstract).
    [13]
    Morley C K, Karanja F M, Wescott W A, et al. Geology and geophysics of the western Turkana Basins, Kenya[J]. AAPG Studies in Geology # 44, 1999, 2: 19-54. http://archives.datapages.com/data/specpubs/study44/st44ch02/ch2.htm
    [14]
    贾屾, 邱春光, 湖滨, 等. 东非裂谷东支South Lokichar盆地油气成藏规律[J]. 海洋地质前沿, 2018, 34(4): 33-40. https://www.cnki.com.cn/Article/CJFDTOTAL-HYDT201804005.htm

    Jia S, Qiu C G, Hu B, et al. Hydrocarbon accumulation in South Lokichar Basin, east branch of East Africa Rift System[J]. Marine Geology Frontiers, 2018, 34(4): 33-40(in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-HYDT201804005.htm
    [15]
    胡滨, 贾屾, 邱春光, 等. 东非裂谷Kerio盆地石油地质特征与勘探潜力[J]. 中国地质调查, 2019, 6(1): 26-33. https://www.cnki.com.cn/Article/CJFDTOTAL-DZDC201901004.htm

    Hu B, Jia S, Qiu C G, et al. Petroleum geological characteristics and exploration potential of Kerio Basin in East African Rift System[J]. Geological Survey of China, 2019, 6(1): 26-33(in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-DZDC201901004.htm
    [16]
    胡滨, 张世鑫, 贾屾. 东非裂谷Kerio Valley盆地石油地质特征与勘探潜力[J]. 石油化工应用, 2018, 37(6): 110-113. doi: 10.3969/j.issn.1673-5285.2018.06.025

    Hu B, Zhang S X, Jia S. Petroleum geology and exploration potential of Kerio Valley Basin in East African Rift System[J]. Petrochemical Industry Aplication, 2018, 37(6): 110-113(in Chinese with English abstract). doi: 10.3969/j.issn.1673-5285.2018.06.025
    [17]
    胡滨, 邱春光, 张世鑫, 等. 东非裂谷Turkana盆地石油地质特征与勘探潜力[J]. 四川地质学报, 2019, 39(1): 45-49. doi: 10.3969/j.issn.1006-0995.2019.01.010

    Hu B, Qiu C G, Zhang S X, et al. Petroleum geological features and prospecting potential of the Turkana Basin in the East African Rift System[J]. Acta Geologica Sichuan, 2019, 39(1): 45-49(in Chinese with English abstract). doi: 10.3969/j.issn.1006-0995.2019.01.010
    [18]
    Boone S C, Kohn B P, Gleadow A J W, et al. Tectono-thermal evolution of a long-lived segment of the East African Rift System: Thermochronological insights from the North Lokichar Basin, Turkana, Kenya[J]. Tectonophysics, 2018, 744: 23-46. doi: 10.1016/j.tecto.2018.06.010
    [19]
    Torres A V, Bande A, Sobel E R, et al. Cenozoic extension in the Kenya Rift from low-temperature thermochronology: Links to diachronous spatiotemporal evolution of rifting in East Africa[J]. Tectonics, 2015, 34(12): 2367-2386. doi: 10.1002/2015TC003949
    [20]
    Boone S C, Seiler C, Kohn B P, et al. Influence of rift superposition onlithospheric response to East African Rift System extension: Lapur Range, Turkana, Kenya[J]. Tectonics, 2018, 37(1): 182-207. doi: 10.1002/2017TC004575
    [21]
    Pik R, Marty B, Carignan J, et al. Timing of East African Rift development in southern Ethiopia: Implication for mantle plume activity and evolution of topography[J]. Geology, 2008, 36(2): 167-170. doi: 10.1130/G24233A.1
    [22]
    张燕, 田作基, 温志新, 等. 东非裂谷系东支油气成藏主控因素及勘探潜力[J]. 石油实验地质, 2017, 39(1): 79-85. https://www.cnki.com.cn/Article/CJFDTOTAL-SYSD201701012.htm

    Zhang Y, Tian Z J, Wen Z X, et al. Controlling factors for petroleum accumulation and exploration potential of the eastern branch of East African Rift System[J]. Petroleum Geology & Experiment, 2017, 39(1): 79-85(in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-SYSD201701012.htm
    [23]
    Boschetto H B, Brown F H, McDougall I. Stratigraphy of the Lothidok Range, northern Kenya, and K/Ar ages of its Miocene primates[J]. Journal of Human Evolution, 1992, 22(1): 47-71. doi: 10.1016/0047-2484(92)90029-9
    [24]
    Abdelfettah Y, Tiercelin J J, Tarits P, et al. Subsurface structure and stratigraphy of the northwest end of the Turkana Basin, Northern Kenya Rift, as revealed by magnetotellurics and gravity joint inversion[J]. Journal of African Earth Sciences, 2016, 119: 120-138. doi: 10.1016/j.jafrearsci.2016.03.008
    [25]
    Tiercelin J J, Potdevin J L, Thuo P K, et al. Stratigraphy, sedimentology and diagenetic evolution of the Lapur sandstone in northern Kenya: Implications for oil exploration of the Meso-Cenozoic Turkana Depression[J]. Journal of African Earth Sciences, 2012, 71: 43-79. http://www.sciencedirect.com/science/article/pii/S1464343X12001264
    [26]
    Tiercelin J J, Potdevin J L, Morley C K, et al. Hydrocarbon potential of the Meso-Cenozoic Turkana Depression, northern Kenya. I. Reservoirs: Depositional environments, diagenetic characteristics, and source rock-reservoir relationships[J]. Marine and Petroleum Geology, 2004, 21(1): 41-62. doi: 10.1016/j.marpetgeo.2003.11.007
    [27]
    姜华, 王华, 刘军, 等. 珠江口盆地珠三坳陷神狐组-恩平组沉积时期南断裂活动性对沉积的控制作用[J]. 地质科技情报, 2009, 28(2): 49-53. doi: 10.3969/j.issn.1000-7849.2009.02.009

    Jiang H, Wang H, Liu J, et al. Activity of south fault of ZhuⅢ Depression and its controlling on sedimentation during Shenhu Formation to Enping Formation in Pearl River Mouth Basin[J]. Geological Science and Technology Information, 2009, 28(2): 49-53(in Chinese with English abstract). doi: 10.3969/j.issn.1000-7849.2009.02.009
    [28]
    Phillips T B, Fazlikhani H, Gawthorpe R L, et al. The influence of structural inheritance and multiphase extension on rift development, the northern North Sea[J]. Tectonics, 2019, 38(12): 4099-4126. doi: 10.1029/2019TC005756
    [29]
    Liu Y, Chen Q, Wang X, et al. Influence of normal fault growth and linkage on the evolution of a rift basin: A case from theGaoyou Depression of the Subei Basin, eastern China[J]. AAPG Bulletin, 2017, 101(2): 265-288. doi: 10.1306/06281615008
    [30]
    Henstra G A, Kristensen T B, Rotevatn A, et al. How do pre-existing normal faults influence rift geometry? A comparison of adjacent basins with contrasting underlying structure on the Lofoten Margin, Norway[J]. Basin Research, 2019, 31(6): 1083-1097. doi: 10.1111/bre.12358
    [31]
    张连进, 黄家强, 罗强, 等. 川西北前陆双鱼石地区砂箱物理模拟及其油气地质意义[J]. 地质科技通报, 2021, 40(2): 156-166. https://dzkjqb.cug.edu.cn/CN/abstract/abstract10126.shtml

    Zhang L J, Huang J Q, Luo Q, et al. Analogue experiments for the Shuangyushi area in the northwestern Sichuan Foreland Basin and their implications[J]. Bulletin of Geological Science and Technology, 2021, 40(2): 156-166(in Chinese with English abstract). https://dzkjqb.cug.edu.cn/CN/abstract/abstract10126.shtml
    [32]
    赖冬, 范彩伟, 罗强, 等. 砂箱物理模型浅表底辟构造研究进展[J]. 地质科技情报, 2019, 38(3): 103-119. https://www.cnki.com.cn/Article/CJFDTOTAL-DZKQ201903010.htm

    Lai D, Fan C W, Luo Q, et al. A review of tectonic sandbox modeling of diapir structure in shallow crust[J]. Geological Science and Technology Information, 2019, 38(3): 103-119(in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-DZKQ201903010.htm
    [33]
    Brune S, Williams S E, Butterworth N P, et al. Abrupt plate accelerations shape rifted continental margins[J]. Nature, 2016, 536: 201-204. doi: 10.1038/nature18319
    [34]
    Ebinger C. Continental break-up: The East African perspective[J]. Astronomy & Geophysics, 2005, 46(2): 16-21. http://astrogeo.oxfordjournals.org/content/46/2/2.16.full.pdf
    [35]
    Koptev A, Burov E, Gerya T, et al. Plume-induced continental rifting and break-up in ultra-slow extension context: Insights from 3D numerical modeling[J]. Tectonophysics, 2018, 746: 121-137. doi: 10.1016/j.tecto.2017.03.025
    [36]
    Corti G, Calignano E, Petit C, et al. Controls of lithospheric structure and plate kinematics on rift architecture and evolution: An experimental modeling of the Baikal rift[J]. Tectonics, 2011, 30(3): 1-16. http://carole.petit-mariani.pagesperso-orange.fr/mapage/Corti&alTectonics2011.pdf
    [37]
    Brune S, Corti G, Ranalli G. Controls of inherited lithospheric heterogeneity on rift linkage: Numerical and analog models of interaction between the Kenyan and Ethiopian rifts across the Turkana Depression[J]. Tectonics, 2017, 36(9): 1767-1786. doi: 10.1002/2017TC004739
    [38]
    Morley C K, Wescott W A, Stone D M, et al. Tectonic evolution of the northern Kenyan Rift[J]. Journal of the Geological Society, 1992, 149(3): 333-348. doi: 10.1144/gsjgs.149.3.0333
    [39]
    Morley C K. Developments in the structural geology of rifts over the last decade and their impact on hydrocarbon exploration[J]. Geological Society, London, Special Publications, 1995, 80(1): 1-32. doi: 10.1144/GSL.SP.1995.080.01.01
    [40]
    Rosendahl B R. Architecture of continental rifts with special reference to East Africa[J]. Annual Review of Earth and Planetary Sciences, 1987, 15: 445. doi: 10.1146/annurev.ea.15.050187.002305
    [41]
    Mugisha F, Ebinger C J, Strecker M, et al. Two-stage rifting in the Kenya rift: Implications for half-graben models[J]. Tectonophysics, 1997, 278(1/4): 63-81. http://www.sciencedirect.com/science?_ob=ShoppingCartURL&_method=add&_eid=1-s2.0-S0040195197000954&originContentFamily=serial&_origin=article&_ts=1483828415&md5=928ff35511039947dd7f5026eb6f5714
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article Views(280) PDF Downloads(316) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return