Volume 40 Issue 5
Sep.  2021
Turn off MathJax
Article Contents
Zheng Chenyu, Zhao Hongyan, Qiu Chunguang, Zou Yaoyao, Wang Liang, Hu Bin, Jia Shen, Shen Chuanbo. Cenozoic tectonic subsidence characteristics of Albert Lake Depression in East African Rift System[J]. Bulletin of Geological Science and Technology, 2021, 40(5): 162-172. doi: 10.19509/j.cnki.dzkq.2021.0513
Citation: Zheng Chenyu, Zhao Hongyan, Qiu Chunguang, Zou Yaoyao, Wang Liang, Hu Bin, Jia Shen, Shen Chuanbo. Cenozoic tectonic subsidence characteristics of Albert Lake Depression in East African Rift System[J]. Bulletin of Geological Science and Technology, 2021, 40(5): 162-172. doi: 10.19509/j.cnki.dzkq.2021.0513

Cenozoic tectonic subsidence characteristics of Albert Lake Depression in East African Rift System

doi: 10.19509/j.cnki.dzkq.2021.0513
  • Received Date: 30 Jan 2021
  • The Cenozoic East African Rift is a typical intracontinental rift at the germination stage of the Wilson cycle, which has long attracted the attention of geologists at home and overseas. The Albert Lake Depression is located at the northern most end of the west branch of the East African Rift System.It is an asymmetric (half) graben with a NW orientation. At present, good industrial oil and gas have been discovered in this area.The analysis of the subsidence evolution is of great significance to further reveal the tectonic subsidence characteristics and petroleum exploration potential of this depression.Based on drilling data, combined with seismic interpretation, and analysis of subsidence history, burial history and fault activities, this paper reclassifies tectonic units, and summarizes the characteristics of tectonic subsidence. The relationship between subsidence and fault activities, the law of subsidence center migration and its indicating significance for petroleum exploration were discussed in this study. The results show that the secondary structural units in the east of the Albert Lake Depression are mainly controlled by the eastern boundary faults, and the F1 and F2 faults play a major role in controlling the subsidence and formation of the eastern steep fault belt, the eastern fault terrace zone and the three structural adjustment belts. The subsidence rate of the southern sub sag was large in the early stage, which was conducive to the formation of extremely thick source rocks in Late Miocene.With the northward migration of the subsidence center, the Upper Miocene and Lower Pliocene source rocks were developed in the northern sub sag.The structural belt around the subsidence center is the favorable direction area for hydrocarbon migration and accumulation. This study provides a new basis for further petroleum in Albert Lake Depression of the East African Rift System.

     

  • loading
  • [1]
    Ebinger C J. Tectonic development of the western branch of the East African Rift System[J]. Geological Society of America Bulletin, 1989, 101: 885-903. doi: 10.1130/0016-7606(1989)101<0885:TDOTWB>2.3.CO;2
    [2]
    Pouclet A, Bellon H, Bram K. The Cenozoic volcanism in the Kivu Rift: Assessment of the tectonic setting, geochemistry, and geochronology of the volcanic activity in the South-Kivu and Virunga regions[J]. Journal of African Earth Sciences, 2016, 121: 219-246. doi: 10.1016/j.jafrearsci.2016.05.026
    [3]
    Abeinomugisha D, Kasande R. Tectonic control on hydrocarbon accumulation in the intracontinental albertine graben of the East African Rift System[J]. AAPG Memoir, 2012, 100(9): 14-21. http://www.oilfield.searchanddiscovery.com/documents/2009/10183abeinomugisha/images/abeinomugisha.pdf
    [4]
    张兴, 童晓光. 艾伯特裂谷盆地含油气远景评价: 极低勘探程度盆地评价实例[J]. 石油勘探与开发, 2001, 28(2): 102-106. doi: 10.3321/j.issn:1000-0747.2001.02.030

    Zhang X, Tong X G. Hydrocarbon prospective evalution of Albert Rift Basin: An example of evalution about least explored basins[J]. Petroleum Exploration and Development, 2001, 28(2): 102-106(in Chinese with English abstract). doi: 10.3321/j.issn:1000-0747.2001.02.030
    [5]
    孙和风, 姜雪, 钟锴. 阿尔伯特盆地沉降-热史演化特征分析[J]. 中国海上油气, 2018, 30(5): 63-70. https://www.cnki.com.cn/Article/CJFDTOTAL-ZHSD201805008.htm

    Sun H F, Jiang X, Zhong K, et al. Analysis on subsidence-thermal history evolution characteristics of Albert Basin[J]. China Offshore Oil and Gas, 2018, 30(5): 63-70(in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-ZHSD201805008.htm
    [6]
    Chorowicz J. The East African Rift System[J]. Journal of African Earth Sciences, 2005, 43: 379-410. doi: 10.1016/j.jafrearsci.2005.07.019
    [7]
    张可宝, 史卜庆, 徐志强, 等. 东非地区沉积盆地油气潜力浅析[J]. 天然气地球科学, 2007, 18(6): 869-874. doi: 10.3969/j.issn.1672-1926.2007.06.018

    Zhang K B, Shi B Q, Xu Z Q, et al. A study on petroleum geology and hydrocarbon potential in Eastern Africa[J]. Natural Gas Geoscience, 2007, 18(6): 869-874(in Chinese with English abstract). doi: 10.3969/j.issn.1672-1926.2007.06.018
    [8]
    温志新, 童晓光, 张光亚, 等. 东非裂谷系盆地群石油地质特征及勘探潜力[J]. 中国石油勘探, 2012, 17(4): 60-65. doi: 10.3969/j.issn.1672-7703.2012.04.010

    Wen Z X, Tong X G, Zhang G Y, et al. Petroleum geology features and exploration potential of basin group in East African Rift System[J]. China Petroleum Exploration, 2012, 17(4): 60-65(in Chinese with English abstract). doi: 10.3969/j.issn.1672-7703.2012.04.010
    [9]
    于水, 韩文明, 赵伟, 等. 裂谷盆地陡断带三角洲沉积特征与成因模式: 以东非裂谷Albertine地堑为例[J]. 中国海上油气, 2013, 25(6): 31-35. https://www.cnki.com.cn/Article/CJFDTOTAL-ZHSD201306005.htm

    Yu S, Han W M, Zhao W, et al. Delta sedimentation and origin model within steep faulted zones in rift basins: A case of Albertine graben in East African Rift Valley[J]. China Offshore Oil and Gas, 2013, 25(6): 31-35(in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-ZHSD201306005.htm
    [10]
    蔡文杰, 韩文明, 许志刚, 等. 东非Lake Albert盆地构造调节带特征及其对油气成藏的控制作用[J]. 地质科技情报, 2015, 34(4): 119-123. https://www.cnki.com.cn/Article/CJFDTOTAL-DZKQ201504017.htm

    Cai W J, Han W M, Xu Z G, et al. Geological character of accommodation zone and its importance in controlling accumulation of oil and gas in Lake Albert Basin[J]. Geological Science and Technology Information, 2015, 34(4): 119-123(in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-DZKQ201504017.htm
    [11]
    韩文明, 赵伟. 试论火山活动对东非裂谷系油气成藏的作用[J]. 中国海上油气, 2018, 30(4): 20-26. https://www.cnki.com.cn/Article/CJFDTOTAL-ZHSD201804003.htm

    Han W M, Zhao W. Discussion on effect of volcanic activities on hydrocarbon accumulation in East African Rift System[J]. China Offshore Oil and Gas, 2018, 30(4): 20-26(in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-ZHSD201804003.htm
    [12]
    李智, 张志业, 何登发, 等. 南襄盆地泌阳凹陷与南阳凹陷油气地质特征类比及勘探启示[J]. 地质科技通报, 2020, 39(2): 74-84. https://dzkjqb.cug.edu.cn/CN/abstract/abstract9976.shtml

    Li Z, Zhang Z Y, He D F, et al. Comparison in petroleum geology between Biyang Depression and Nanyang Depression in Nanxiang Basin and its exploration significance[J]. Bulletin of Geological Science and Technology, 2020, 39(2): 74-84(in Chinese with English abstract). https://dzkjqb.cug.edu.cn/CN/abstract/abstract9976.shtml
    [13]
    顾家伟. 上新世以来苏北盆地与长江三角洲构造沉降史分析[J]. 地质科技情报, 2015, 34(1): 95-99, 106. https://www.cnki.com.cn/Article/CJFDTOTAL-DZKQ201501015.htm

    Gu J W. Tectonic subsidence analysis of Subei Basin and Yangtze Delta from the Pliocene[J]. Geological Science and Technology Information, 2015, 34(1): 95-99, 106(in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-DZKQ201501015.htm
    [14]
    李向东, 陈刚, 李玖勇, 等. 沉降史分析方法及研究现状[J]. 石油天然气学报, 2010, 32(5): 199-203. https://www.cnki.com.cn/Article/CJFDTOTAL-JHSX201005048.htm

    Li X D, Chen G, Li J Y, et al. Analysis methods and research status of subsidence history[J]. Journal of Oil and Gas Technology, 2010, 32(5): 199-203(in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-JHSX201005048.htm
    [15]
    Zhao R, Chen S, Wang H, et al. Intense faulting and downwarping of Nanpu Sag in the Bohai Bay Basin, eastern China: Response to the Cenozoic Stagnant Pacific Slab[J]. Marine and Petroleum Geology, 2019, 109: 819-838. doi: 10.1016/j.marpetgeo.2019.06.034
    [16]
    Ma M, Liu C Y, Qi J F, et al. Cenozoic subsidence history of the Pearl River Mouth Basin, northern South China Sea[J]. Geological Journal, 2020, 55: 750-770. doi: 10.1002/gj.3439
    [17]
    陈懋弘, 梁金城, 张桂林, 等. 桂北-桂东加里东期盆地构造沉降史分析[J]. 大地构造与成矿学, 2006, 30(1): 9-17. doi: 10.3969/j.issn.1001-1552.2006.01.002

    Chen M H, Liang J C, Zhang G L, et al. Tectonic subsidence history of the Caledonian Basin in northeast Guangxi[J]. Geotectonica et Metallogenia, 2006, 30(1): 9-17(in Chinese with English abstract). doi: 10.3969/j.issn.1001-1552.2006.01.002
    [18]
    何玉光, 卢华复, 杨树锋, 等. 库车中新生代盆地沉降特征[J]. 浙江大学学报: 理学版, 2004, 31(1): 110-113. https://www.cnki.com.cn/Article/CJFDTOTAL-HZDX200401024.htm

    He Y G, Lu H F, Yang S F, et al. Subsiding features of the Mesozoic and Cenozoic Kuqa Basin, northwestern China[J]. Journal of Zhejiang University: Natural Science, 2004, 31(1): 110-113(in Chinese with English abstract). . https://www.cnki.com.cn/Article/CJFDTOTAL-HZDX200401024.htm
    [19]
    Roberts E M, Stevens N J, O'Connor P M, et al. Initiation of the western branch of the East African Rift coeval with the eastern branch[J]. Nature Geoscience, 2012, 5: 289-294. doi: 10.1038/ngeo1432
    [20]
    Bauer F U, Glasmacher U A, Ring U, et al. Long-term cooling history of the Albertine Rift: New evidence from the western rift shoulder, D.R. Congo[J]. International Journal of Earth Sciences, 2016, 105(6): 1707-1728. doi: 10.1007/s00531-015-1146-6
    [21]
    Morley C K. Stress re-orientation along zones of weak fabrics in rifts: An explanation for pure extension in "oblique" rift segments[J]. Earth and Planetary Science Letters, 2010, 297: 667-673. doi: 10.1016/j.epsl.2010.07.022
    [22]
    Purcell P G. Re-imagining and re-imaging the development of the East African Rift[J]. Petroleum Geoscience, 2018, 24: 21-40. doi: 10.1144/petgeo2017-036
    [23]
    Bauer F U, Karl M, Glasmacher U A, et al. The Rwenzori Mountains of western Uganda-Aspects on the evolution of their remarkable morphology within the Albertine Rift[J]. Journal of African Earth Sciences, 2012, 73: 44-56. http://www.onacademic.com/detail/journal_1000035399356610_0e78.html
    [24]
    Delvaux D, Barth A. African stress pattern from formal inversion of focal mechanism data[J]. Tectonophysics, 2010, 482: 105-128. doi: 10.1016/j.tecto.2009.05.009
    [25]
    Stamps D S, Flesch L M, Calais E, et al. Current kinematics and dynamics of Africa and the East African Rift System[J]. Journal of Geophysical Research: Solid Earth, 2014, 119(6): 5161-5186. doi: 10.1002/2013JB010717
    [26]
    Sachau T, Koehn D, Stamps D, et al. Fault kinematics and stress fields in the Rwenzori Mountains, Uganda[J]. Journal of Earth Science, 2016, 105: 1729-1740. http://www.onacademic.com/detail/journal_1000037616492410_4048.html
    [27]
    Koehn D, Link K, Sachau T, et al. The Rwenzori Mountains, a Palaeoproterozoic crustal shear belt crossing the Albertine Rift System[J]. Journal of Earth Science, 2016, 105: 1693-1705. doi: 10.1007%2Fs00531-015-1167-1.pdf
    [28]
    Simon B, Guillocheau F, Robin C, et al. Deformation and sedimentary evolution of the Lake Albert Rift (Uganda, East African Rift System)[J]. Marine and Petroleum Geology, 2017, 86: 17-37. doi: 10.1016/j.marpetgeo.2017.05.006
    [29]
    赵伟, 韩文明, 胡滨, 等. 东非裂谷Albertine地堑石油地质条件和成藏规律[J]. 四川地质学报, 2016, 36(2): 275-279. doi: 10.3969/j.issn.1006-0995.2016.02.023

    Zhao W, Han W M, Hu B, et al. Petroleum geology and hydrocarbon accumulation in the Albertine Graben, East Africa Rift[J]. Acta Geologica Sichuan, 2016, 36(2): 275-279(in Chinese with English abstract). doi: 10.3969/j.issn.1006-0995.2016.02.023
    [30]
    于彪, 刘建良, 杨贵丽, 等. 渤海海域东部不同富油凹陷烃源岩生烃特征差异及意义[J]. 地质科技通报, 2021, 40(4): 104-114, 130. https://dzkjqb.cug.edu.cn/CN/abstract/abstract10165.shtml

    Yu B, Liu J L, Yang G L, et al. Hydrocarbon generation characteristics and signification of source rock in different oil-rich depressions in the eastern part of the Bohai Sea[J]. Bulletin of Geological Science and Technology, 2021, 40(4): 104-114, 130. https://dzkjqb.cug.edu.cn/CN/abstract/abstract10165.shtml
    [31]
    王敏芳, 焦养泉, 任建业, 等. 准噶尔盆地侏罗纪沉降特征及其与构造演化的关系[J]. 石油学报, 2007, 28(1): 27-32. https://www.cnki.com.cn/Article/CJFDTOTAL-SYXB200701004.htm

    Wang M F, Jiao Y Q, Ren J Y, et al. Characteristics of Jurassic subsidence and its relation with tectonic evolution in Junggar Basin[J]. Acta Petrolei Sinica, 2007, 28(1): 27-32(in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-SYXB200701004.htm
    [32]
    崔哿, 金爱民, 邬长武, 等. 东非裂谷阿尔伯特盆地石油地质特征及成藏模式[J]. 石油实验地质, 2018, 40(4): 514-518. https://www.cnki.com.cn/Article/CJFDTOTAL-SYSD201804009.htm

    Cui G, Jin A M, Wu C W, et al. Petroleum geology and hydrocarbon accumulation pattern in the Lake Albert Basin of East African Rift System[J]. Petroleum Geology and Experiment, 2018, 40(4): 514-518(in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-SYSD201804009.htm
    [33]
    张燕, 田作基, 温志新, 等. 东非裂谷系东支油气成藏主控因素及勘探潜力[J]. 石油实验地质, 2017, 39(1): 79-85. https://www.cnki.com.cn/Article/CJFDTOTAL-SYSD201701012.htm

    Zhang Y, Tian Z J, Wen Z X, et al. Controlling factors for petroleum accumulation and exploration potential of the eastern branch of East African Rift System[J]. Petroleum Geology and Experiment, 2017, 39(1): 79-85(in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-SYSD201701012.htm
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article Views(811) PDF Downloads(323) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return