Volume 41 Issue 2
Mar.  2022
Turn off MathJax
Article Contents
Huang Faming, Li Jinfeng, Wang Junyu, Mao Daxiong, Sheng Mingqiang. Modelling rules of landslide susceptibility prediction considering the suitability of linear environmental factors and different machine learning models[J]. Bulletin of Geological Science and Technology, 2022, 41(2): 44-59. doi: 10.19509/j.cnki.dzkq.2022.0010
Citation: Huang Faming, Li Jinfeng, Wang Junyu, Mao Daxiong, Sheng Mingqiang. Modelling rules of landslide susceptibility prediction considering the suitability of linear environmental factors and different machine learning models[J]. Bulletin of Geological Science and Technology, 2022, 41(2): 44-59. doi: 10.19509/j.cnki.dzkq.2022.0010

Modelling rules of landslide susceptibility prediction considering the suitability of linear environmental factors and different machine learning models

doi: 10.19509/j.cnki.dzkq.2022.0010
  • Received Date: 15 Jul 2021
  • For linear environmental factors such as river, road and geological fault networks, buffer analysis in GIS is commonly used to extract the buffer distances to the river and/or road networks. However, the line distances are discrete variables with random fluctuations of different grid sizes and are more sensitive to the errors of point and/or line elements, leading to a reduction in the accuracy of landslide susceptibility prediction (LSP). This study aims to use continuous environmental factors, such as the spatial density of river and road networks, to improve the suitability of linear environmental factors. Taking An'yuan County of Jiangxi Province as an example, 14 environmental factors, such as elevation, topographic relief, distances to river and road networks (original factors), are selected. Then, the two linear environmental factors of distances to river and road networks are improved to river and road density (improved factors). Based on machine learning models such as logistic regression (LR), multilayer perceptron (MLP), support vector machine (SVM) and C5.0 decision tree, original factor-based and improved factor-based machine learning models are built to carry out the LSP. The receiver operating characteristic (ROC) curves and the distribution characteristics of landslide susceptibility indexes are used to evaluate the LSP modelling rules. The results show that ① the LSP accuracy of the improved factor-based models are higher than those of the original factor-based models, indicating that the spatial density is more suitable for LSP; ② the C5.0 model has the best LSP performance among the four machine learning models, followed by the SVM, MLP and LR models; and ③ river and road factors are of great significance for landslide evolution, and their importance does not decrease underimproved factor-based machine learning models.

     

  • loading
  • [1]
    周超, 殷坤龙, 曹颖, 等. 基于诱发因素响应与支持向量机的阶跃式滑坡位移预测[J]. 岩石力学与工程学报, 2015, 34(增刊2): 4132-4139. https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX2015S2061.htm

    Zhou C, Yin K L, Cao Y, et al. Displacement prediction of step-like landslide based on the response of inducing factors and Support Vector Machine[J]. Chinese Journal of Rock Mechanics and Engineering, 2015, 34(S2): 4132-4139 (in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX2015S2061.htm
    [2]
    Chang Z L, Gao H X, Huang F M, et al. Study on the creep behaviours and the improved Burgers model of a loess landslide considering matric suction[J]. Natural Hazards, 2020, 103: 1479-1497. doi: 10.1007/s11069-020-04046-0
    [3]
    吴常润, 赵冬梅, 刘澄静, 等. 基于GIS的华宁县滑坡灾害影响因子分析及易发性评价[J]. 水土保持研究, 2019, 26(6): 212-218, 225. https://www.cnki.com.cn/Article/CJFDTOTAL-STBY201906034.htm

    Wu C R, Zhao D M, Liu C J, et al. GIS-based analysis on impact factors and susceptibility evaluation of landslide hazard in Huaning County[J]. Research of Soil and Water Conservation, 2019, 26(6): 212-218, 225 (in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-STBY201906034.htm
    [4]
    Li S, Bai Y, Long Y, et al. GIS-supported evaluation of landslide susceptibility in the karst mountainous area: A case study in Wudang, Guiyang[J]. E3S Web of Conferences, 2020, 143(3/4): 02032.
    [5]
    Huang F M, Chen J W, Yao C, et al. SUSLE: A slope and seasonal rainfall-based RUSLE model for regional quantitative prediction of soil erosion[J]. Bulletin of Engineering Geology and the Environment, 2020, 79(10), 5213-5228. doi: 10.1007/s10064-020-01886-9
    [6]
    郭子正, 殷坤龙, 唐扬, 等. 库水位下降及降雨作用下麻柳林滑坡稳定性评价与预测[J]. 地质科技情报, 2017, 36(4): 260-265, 270. https://www.cnki.com.cn/Article/CJFDTOTAL-DZKQ201704035.htm

    Gou Z Z, Yin K L, Tang Y, et al. Stability evaluation and prediction of Maliulin landslide under reservoir water level decline and rainfall[J]. Geological Science and Technology Information, 2017, 36(4): 260-265, 270 (in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-DZKQ201704035.htm
    [7]
    熊十力. 基于岩性因子的滑坡易发性评价研究[D]. 武汉: 湖北工业大学, 2020.

    Xiong S L. Study on landslides susceptibility mapping based on lithology factors[D]. Wuhan: Hubei University of Technology, 2020 (in Chinese with English abstract).
    [8]
    李文彬, 范宣梅, 黄发明, 等. 不同环境因子联接方法和数据驱动模型对滑坡易发性预测建模的影响规律[J/OL]. 地球科学: 1-20[2021-06-25]. http://kns.cnki.net/kcms/detail/42.1874.P.20210506.1457.004.html.

    Li W B, Fan X M, Huang F M, et al. Influence law of different environmental factor connection methods and data-based models on landslide susceptibility prediction modeling[J/OL]. Earth Science: 1-20[2021-06-25]. http://kns.cnki.net/kcms/detail/42.1874.P.20210506.1457.004.html (in Chinese with English abstract).
    [9]
    田乃满, 兰恒星, 伍宇明, 等. 人工神经网络和决策树模型在滑坡易发性分析中的性能对比[J]. 地球信息科学学报, 2020, 22(12): 2304-2316. doi: 10.12082/dqxxkx.2020.190766

    Tian N M, Lan H X, Wu Y M, et al. Performance comparison of BP Artificial Neural Network and CART Decision Tree Model in landslide susceptibility prediction[J]. Journal of Geo-information Science, 2020, 22(12): 2304-2316 (in Chinese with English abstract). doi: 10.12082/dqxxkx.2020.190766
    [10]
    Dou J, Yunus A P, Bui D T, et al. Assessment of advanced random forest and decision tree algorithms for modeling rainfall-induced landslide susceptibility in the Izu-Oshima Volcanic Island, Japan[J]. Science of the Total Environment, 2019, 662: 332-346. doi: 10.1016/j.scitotenv.2019.01.221
    [11]
    Tsangaratos P, Ilia I, Hong H Y, et al. Applying information theory and GIS-based quantitative methods to produce landslide susceptibility maps in Nancheng County, China[J]. Landslides, 2017, 14(3): 1091-1111. doi: 10.1007/s10346-016-0769-4
    [12]
    黄发明, 曹中山, 姚池, 等. 基于决策树和有效降雨强度的滑坡危险性预警[J]. 浙江大学学报: 工学版, 2021, 55(3): 472-482. https://www.cnki.com.cn/Article/CJFDTOTAL-ZDZC202103007.htm

    Huang F M, Cao Z S, Yao C, et al. Landslideshazard warning based on decision tree and effective rainfall intensity[J]. Journal of Zhejiang University: Engineering Science, 2021, 55(3): 472-482 (in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-ZDZC202103007.htm
    [13]
    Reichenbach P, Rossi M, Malamud B D, et al. A review of statistically-based landslide susceptibility models[J]. Earth-Science Reviews, 2018, 180: 60-91. doi: 10.1016/j.earscirev.2018.03.001
    [14]
    黄发明, 殷坤龙, 张桂荣, 等. 基于相空间重构和小波分析-粒子群向量机的滑坡地下水位预测[J]. 地球科学: 中国地质大学学报, 2015, 40(7): 1254-1265. https://www.cnki.com.cn/Article/CJFDTOTAL-DQKX201507013.htm

    Huang F M, Yin K L, Zhang G R, et al. Landslide groundwater level time series prediction based on phase space reconstruction and wavelet analysis-support vector machine optimized by PSO algorithm[J]. Earth Science: Journal of China University of Geosciences, 2015, 40(7): 1254-1265 (in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-DQKX201507013.htm
    [15]
    黄发明, 殷坤龙, 张桂荣, 等. 多变量PSO-SVM模型预测滑坡地下水位[J]. 浙江大学学报: 工学版, 2015, 49(6): 1193-1200. https://www.cnki.com.cn/Article/CJFDTOTAL-ZDZC201506031.htm

    Huang F M, Yin K L, Zhang G R, et al. Prediction of groundwater level in landslide using multivariable PSO-SVM model[J]. Journal of Zhejiang University: Engineering Science, 2015, 49(6): 1193-1200 (in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-ZDZC201506031.htm
    [16]
    马彦彬, 李红蕊, 王林, 等. 机器学习方法在滑坡易发性评价中的应用(英文)[J/OL]. 土木与环境工程学报(中英文): 1-14[2021-06-25]. http://kns.cnki.net/kcms/detail/50.1218.TU.20210608.1649.008.html.

    Ma Y B, Li H X, Wang L, et al. Machine learning algorithms and techniques for landslide susceptibility investigation literature review[J/OL]. Journal of Civil and Environmental Engineering: 1-14[2021-06-25]. http://kns.cnki.net/kcms/detail/50.1218.TU.20210608.1649.008.html (in Chinese with English abstract).
    [17]
    曾帅. 基于多模型对比的盐边县滑坡易发性评价[D]. 成都: 成都理工大学, 2020.

    Zeng S. Evaluation of landslide susceptibility in Yanbian County based on multi-model comparison[D]. Chengdu: Chengdu University of Technology, 2020 (in Chinese with English abstract).
    [18]
    韩继冲, 张朝, 曹娟. 基于逻辑回归的地震滑坡易发性评价: 以汶川地震、鲁甸地震为例[J]. 灾害学, 2021, 36(2): 193-199. doi: 10.3969/j.issn.1000-811X.2021.02.034

    Han J C, Zhang C, Cao J. Assessing earthquake-induced landslide susceptibility based on logistic regression in 2008 Wenchuan Earthquake and 2014 Ludian Earthquake[J]. Journal of Catastrophology, 2021, 36(2): 193-199 (in Chinese with English abstract). doi: 10.3969/j.issn.1000-811X.2021.02.034
    [19]
    Huang F M, Cao Z S, Jiang S H, et al. Landslide susceptibility prediction based on a semi-supervised multiple-layer perceptron model[J]. Landslides, 2020, 17(12): 2919-2930. doi: 10.1007/s10346-020-01473-9
    [20]
    陈飞, 蔡超, 李小双, 等. 基于LR-ANN-SVM的滑坡易发性评价[J]. 有色金属科学与工程, 2020, 11(4): 82-90. https://www.cnki.com.cn/Article/CJFDTOTAL-JXYS202004013.htm

    Chen F, Cai C, Li X S, et al. Evaluation of landslide susceptibility based on LR-ANN-SVM[J]. Nonferrous Metals Science and Engineering, 2020, 11(4): 82-90 (in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-JXYS202004013.htm
    [21]
    Saito H, Nakayama D, Matsuyama H. Comparison of landslide susceptibility based on a decision-tree model and actual landslide occurrence: The Akaishi Mountains, Japan[J]. Geomorphology, 2009, 109(3): 108-121.
    [22]
    Tanyu B F, Aiyoub A, Yashar A, et al. Landslide susceptibility analyses using Random Forest, C4.5, and C5.0 with balanced and unbalanced datasets[J]. Catena, 2021, 203: 105355. doi: 10.1016/j.catena.2021.105355
    [23]
    邓念东, 崔阳阳, 郭有金. 基于频率比-随机森林模型的滑坡易发性评价[J]. 科学技术与工程, 2020, 20(34): 13990-13996. doi: 10.3969/j.issn.1671-1815.2020.34.006

    Deng N D, Cui Y Y, Guo Y J. Frequency ratio-random forest-model-based landslide susceptibility assessment[J]. Science Technology and Engineering, 2020, 20(34): 13990-13996 (in Chinese with English abstract). doi: 10.3969/j.issn.1671-1815.2020.34.006
    [24]
    Youssef A M, Pourghasemi H R. Landslide susceptibility mapping using machine learning algorithms and comparison of their performance at Abha Basin, Asir Region, Saudi Arabia[J]. Geoscience Frontiers, 2021, 12(2): 639-655. doi: 10.1016/j.gsf.2020.05.010
    [25]
    冯杭建. 浙西淳安降雨型滑坡发育规律及危险性评价研究[D]. 武汉: 中国地质大学(武汉), 2016.

    Feng H J. Rainfall-triggered landslide development regularity analysis and hazard assessment in Chun'an, West Zhejiang[D]. Wuhan: China University of Geoscience(Wuhan), 2016 (in Chinese with English abstract).
    [26]
    王倩, 薛云, 张维, 等. 基于支持向量机的滑坡易发性评价[J]. 湖南城市学院学报: 自然科学版, 2021, 30(1): 22-28. doi: 10.3969/j.issn.1672-7304.2021.01.0005

    Wang Q, Xue Y, Zhang W, et al. Landslide susceptibility mapping based on support vector machine models[J]. Journal of Hunan City University: Natural Science, 2021, 30(1): 22-28 (in Chinese with English abstract). doi: 10.3969/j.issn.1672-7304.2021.01.0005
    [27]
    胡涛, 樊鑫, 王硕, 等. 基于逻辑回归模型和3S技术的思南县滑坡易发性评价[J]. 地质科技通报, 2020, 39(2): 113-121. doi: 10.19509/j.cnki.dzkq.2020.0212

    Hu T, Fan J, Wang S, et al. Landslide susceptibility evaluation of Sinan County using logistics regression model and 3S technology[J]. Bulletin of Geological Science and Technology, 2020, 39(2): 113-121 (in Chinese with English abstract). doi: 10.19509/j.cnki.dzkq.2020.0212
    [28]
    杨永刚, 殷坤龙, 赵海燕, 等. 基于C5.0决策树-快速聚类模型的万州区库岸段乡镇滑坡易发性区划[J]. 地质科技情报, 2019, 38(6): 189-197. https://www.cnki.com.cn/Article/CJFDTOTAL-DZKQ201906023.htm
    [29]
    孙丽, 徐卫东. 江西省安远县滑坡灾害发育特征与形成条件[J]. 山西建筑, 2010, 36(5): 95-96. doi: 10.3969/j.issn.1009-6825.2010.05.059

    Sun L, Xü W D. The development characteristics and formation conditions of landslide hazard in Anyuan County in Jiangxi Province[J]. Shanxi Architecture, 2010, 36(5): 95-96 (in Chinese with English abstract). doi: 10.3969/j.issn.1009-6825.2010.05.059
    [30]
    王文坡, 韩爱果, 任光明, 等. 四川省普格县滑坡孕灾环境因子敏感性分析[J]. 长江科学院院报, 2018, 35(9): 63-67, 97. https://www.cnki.com.cn/Article/CJFDTOTAL-CJKB201809015.htm

    Wang W P, Han A G, Ren G M, et al. Sensitivity analysis of hazard-brewing environmental factors of landslides in Puge County of Sichuan Province[J]. Journal of Yangtze River Scientific Research Institute, 2018, 35(9): 63-67, 97 (in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-CJKB201809015.htm
    [31]
    黄发明, 叶舟, 姚池, 等. 滑坡易发性预测不确定性: 环境因子不同属性区间划分和不同数据驱动模型的影响[J]. 地球科学, 2020, 45(12): 4535-4549. https://www.cnki.com.cn/Article/CJFDTOTAL-DQKX202012017.htm

    Huang F M, Ye Z, Yao C, et al. Uncertainties of landslide susceptibility prediction: Different attribute interval divisions of environmental factors and different data-based models[J]. Earth Science, 2020, 45(12): 4535-4549 (in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-DQKX202012017.htm
    [32]
    Merghadi A, Yunus A P, Dou J, et al. Machine learning methods for landslide susceptibility studies: A comparative overview of algorithm performance[J]. Earth-Science Reviews, 2020, 207: 103225.
    [33]
    Hong H Y, Liu J Z, Zhu A X. Landslide susceptibility evaluating using artificial intelligence method in the Youfang district (China)[J]. Environmental Earth Sciences, 2019, 78(15): 488. doi: 10.1007/s12665-019-8415-9
    [34]
    Li D Y, Huang F M, Yan L G, et al. Landslide susceptibility prediction using particle-swarm-optimized multilayer perceptron: Comparisons with multilayer-perceptron-only, BP neural network, and information value models[J]. Applied Sciences, 2019, 9(18): 3664. doi: 10.3390/app9183664
    [35]
    黄发明, 殷坤龙, 蒋水华, 等. 基于聚类分析和支持向量机的滑坡易发性评价[J]. 岩石力学与工程学报, 2018, 37(1): 156-167. https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX201801016.htm

    Huang F M, Yin K L, Jiang S H, et al. Landslide susceptibility assessment based on clustering analysis and support vector machine[J]. Chinese Journal of Rock Mechanics and Engineering, 2018, 37(1): 156-167 (in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX201801016.htm
    [36]
    Guo Z Z, Shi Y, Huang F M, et al. Landslide susceptibility zonation method based on C5.0 decision tree and K-means cluster algorithms to improve the efficiency of risk management[J]. Geoscience Frontiers, 2021, 12(6): 101249. https://www.sciencedirect.com/science/article/pii/S1674987121001134
    [37]
    Pham B T, Bui D T, Prakash I, et al. Hybrid integration of multilayer perceptron neural networks and machine learning ensembles for landslide susceptibility assessment at Himalayan area (India) using GIS[J]. Catena, 2017, 149: 52-63. https://www.sciencedirect.com/science/article/pii/S034181621630368X
    [38]
    Li W B, Fan X M, Huang F M, et al. Uncertainties analysis of collapse susceptibility prediction based on remote sensing and GIS: Influences of different data-based models and connections between collapses and environmental factors[J]. Remote Sensing, 2020, 12(24): 4134.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article Views(468) PDF Downloads(78) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return