Volume 41 Issue 2
Mar.  2022
Turn off MathJax
Article Contents
Liu Yiliang, Chen Jianxiang, Gao Chenxi, Song Kun, Tang Xuan. Energy conversion of the high-speed landslide movement process based on a sliding surface partition mechanical model[J]. Bulletin of Geological Science and Technology, 2022, 41(2): 139-146. doi: 10.19509/j.cnki.dzkq.2022.0061
Citation: Liu Yiliang, Chen Jianxiang, Gao Chenxi, Song Kun, Tang Xuan. Energy conversion of the high-speed landslide movement process based on a sliding surface partition mechanical model[J]. Bulletin of Geological Science and Technology, 2022, 41(2): 139-146. doi: 10.19509/j.cnki.dzkq.2022.0061

Energy conversion of the high-speed landslide movement process based on a sliding surface partition mechanical model

doi: 10.19509/j.cnki.dzkq.2022.0061
  • Received Date: 06 Dec 2021
  • High-speed landslides have the characteristics of fast movement speed and rapid spread. Therefore, it is necessary to study the whole movement process of landslides starting, accelerating and resting.Based on the mechanical properties of the sliding surface, the sliding surface is divided into an elastic medium region and a strain weakening region, and a two-dimensional mechanical model of a high-speed landslide is constructed. The energy calculation formulas of landslide initiation and landslide movement processes are proposed. Taking the Qianjiangping landslide as an example, the initiation speed of the landslide is 2.35 m/s by using the energy calculation formula of landslide initiation. According to the sliding surface morphology, the landslide movement trajectory can be divided into a fast acceleration stage, a steady acceleration stage, a steady deceleration stage, and a sharp deceleration stage. The maximum speed is 16.8 m/s during analysing the motion process. The elevation plane of the landslide front is taken as the potential energy datum plane to analyze the variation in different energy and total energy ratios. In the four movement stages of the landslide, the proportions of kinetic energy were 9.1%, 25.6%, 15.1%, and 0%; the proportions of friction loss energy were 5.5%, 58.8%, 81.7%, and 95.5%; the proportions of potential energy were 85.2%, 14.2%, 0%, and 0%;and the proportions of other resistance energy consumption were 0.2%, 1.4%, 3.2%, and 4.5%. The research conclusions are of great significance to the hazard mechanism and risk analysis of high-speed landslides.

     

  • loading
  • [1]
    肖盛燮, 周小平, 杨海清, 等. 二维高速滑坡力学模型[J]. 岩石力学与工程学报, 2006, 25(3): 456-461. doi: 10.3321/j.issn:1000-6915.2006.03.003

    Xiao S X, Zhou X P, Yang H Q, et al. Two-dimensional high-speed landslide mechanics model[J]. Rock Mechanics and Engineering, 2006, 25(3): 456-461(in Chinese with English abstract). doi: 10.3321/j.issn:1000-6915.2006.03.003
    [2]
    肖诗荣, 刘德富, 胡志宇. 世界三大典型水库型顺层岩质滑坡工程地质比较研究[J]. 工程地质学报, 2010, 18(1): 52-59. doi: 10.3969/j.issn.1004-9665.2010.01.007

    Xiao S R, Liu D F, Hu Z Y. Comparative study on engineering geology of three typical reservoir-type bedding rock landslides in the world[J]. Journal of Engineering Geology, 2010, 18(1): 52-59(in Chinese with English abstract). doi: 10.3969/j.issn.1004-9665.2010.01.007
    [3]
    Wang F, Zhang Y, Huo Z, et al. Mechanism for the rapid motion of the Qianjiangping landslide during reactivation by the first impoundment of the Three Gorges Dam reservoir, China[J]. Landslides, 2008, 5(4): 379-386. doi: 10.1007/s10346-008-0130-7
    [4]
    胡广韬, 毛延龙, 赵法锁. 论基岩滑坡的启程弹冲与行程高速[J]. 灾害学, 1992, 7(3): 1-7. https://www.cnki.com.cn/Article/CJFDTOTAL-ZHXU199203000.htm

    Hu G T, Mao Y L, Zhao F S. On the starting elastic impact and travel speed of bedrock landslide[J]. Disaster Science, 1992, 7(3): 1-7(in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-ZHXU199203000.htm
    [5]
    邹宗兴, 唐辉明, 熊承仁, 等. 高速岩质滑坡启动弹冲加速机制及弹冲速度计算: 以武隆县鸡尾山滑坡为例[J]. 岩土力学, 2014, 35(7): 2004-2012. https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX201407033.htm

    Zou Z X, Tang H M, Xiong C R, et al. The acceleration mechanism of high-speed rock landslide and the calculation of elastic impact velocity: A case study of Jiweishan landslide in Wulong County[J]. Geotechnical Mechanics, 2014, 35(7): 2004-2012(in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX201407033.htm
    [6]
    王兵, 李云, 柴波, 等. 三峡库区易滑地层硬质岩石破坏模式的能量学分析[J]. 安全与环境工程, 2020, 27(1): 26-31. https://www.cnki.com.cn/Article/CJFDTOTAL-KTAQ202001005.htm

    Wang B, Li Y, Chai B, et al. Energy analysis of failure mode of hard rock in slippery stratum in Three Gorges Reservoir area[J]. Safety and Environmental Engineering, 2020, 27(1): 26-31(in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-KTAQ202001005.htm
    [7]
    Yang M, Fukawa T, Ohnishi Y, et al. The application of three-dimensional DDA with a spherical rigid block to rockfall simulation[J]. International Journal of Rock Mechanics & Mining Sciences, 2004, 41(3): 476-476.
    [8]
    Sassa K, He B, Dang K, et al. Plenary: Progress in landslide dynamics[M]. : Springer International Publishing, 2014.
    [9]
    Liu W, He S M, Ouyang C J. Dynamic process simulation with a Savage-Hutter type model for the intrusion of landslide into river[J]. Journal of Mountain Science, 2016, 13(7): 1265-1274. doi: 10.1007/s11629-015-3439-4
    [10]
    Liu D, Chen X. Microscopic observation and analysis of ring shear surface of slip zone soil[J]. Chinese Journal of Rock Mechanics and Engineering, 2013, 32(9): 1827-1834.
    [11]
    Lin H C, Kan, Y C, Sung W P, et al. A deep catastrophic failure model of hillslope for numerical manifold method and multiple physics computation[J]. Arabian Journal for Science & Engineering, 2015, 40(3), 735-746.
    [12]
    Kuo Y S, Tsai Y J, Chen Y S, et al. Movement of deep-seated rainfall-induced landslide at Hsiaolin Village during Typhoon Morakot[J]. Landslides, 2013, 10(2): 191-202. doi: 10.1007/s10346-012-0315-y
    [13]
    Crosta G B, Imposimato S, Roddeman D. Landslide spreading, impulse water waves and modelling of the vajont rockslide[J]. Rock Mechanics and Rock Engineering, 2015, 49(6): 1-24.
    [14]
    Feng C, Li S H, Liu X Y, et al. A semi-spring and semi-edge combined contact model in CDEM and its application to analysis of Jiweishan landslide[J]. Journal of Rock Mechanics and Geotechnical Engineering, 2014, 6(1): 26-35. doi: 10.1016/j.jrmge.2013.12.001
    [15]
    Tommasi P, Campedel P, Consorti C, et al. A Discontinuous approach to the numerical modelling of rock avalanches[J]. Rock Mechanics and Rock Engineering, 2008, 41(1): 37-58. doi: 10.1007/s00603-007-0133-z
    [16]
    Lo C M, Lin M L, Tang C L, et al. A kinematic model of the Hsiaolin landslide calibrated to the morphology of the landslide deposit[J]. Engineering Geology, 2011, 123(1/2): 22-39.
    [17]
    朱冬雪, 许强, 李松林. 三峡库区大型-特大型层状岩质滑坡成因模式及地质特征分析[J]. 地质科技通报, 2020, 39(2): 158-167. doi: 10.19509/j.cnki.dzkq.2020.0217

    Zhu D X, Xu Q, Li S L. Genetic model and geological characteristics analysis of large-to-large layered rock landslide in the Three Gorges Reservoir area[J]. Bulletin of Geological Science and Technology, 2020, 39(2): 158-167(in Chinese with English abstract). doi: 10.19509/j.cnki.dzkq.2020.0217
    [18]
    曹颖, 殷坤龙, 徐丽萍. 孔隙水压力的变化与滑坡速度的关系[J]. 地质科技情报, 2014, 33(4): 202-206. https://www.cnki.com.cn/Article/CJFDTOTAL-DZKQ201404031.htm

    Cao Y, Yin K L, Xu L P. Relationship between variation of pore water pressure and landslide velocity[J]. Geological Science and Technology Information, 2014, 33(4): 202-206(in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-DZKQ201404031.htm
    [19]
    李长冬, 龙晶晶, 姜茜慧, 等. 水库滑坡成因机制研究进展与展望[J]. 地质科技通报, 2020, 39(1): 67-77. doi: 10.19509/j.cnki.dzkq.2020.0108

    Li C D, Long J J, Jiang X H, et al. Research progress and prospect of reservoir landslide mechanism[J]. Bulletin of Geological Science and Technology, 2020, 39(1): 67-77(in Chinese with English abstract). doi: 10.19509/j.cnki.dzkq.2020.0108
    [20]
    秦四清. 斜坡失稳的突变模型与混沌机制[J]. 岩石力学与工程学报, 2000, 19(4): 486-492. doi: 10.3321/j.issn:1000-6915.2000.04.020

    Qin S Q. Catastrophe model and chaos mechanism of slope instability[J]. Journal of Rock Mechanics and Engineering, 2000, 19(4): 486-492(in Chinese with English abstract). doi: 10.3321/j.issn:1000-6915.2000.04.020
    [21]
    岳建伟, 杨光辉, 王思远, 等. 基于弹性滑体的边坡失稳尖点突变模型研究[J]. 河南大学学报: 自然科学版, 2019, 49(3): 354-361. https://www.cnki.com.cn/Article/CJFDTOTAL-HDZR201903013.htm

    Yue J W, Yang G H, Wang S Y, et al. Research on the cusp catastrophe model of slope instability based on elastic sliding body[J]. Journal of Henan University: Natural Science Edition, 2019, 49(3): 354-361(in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-HDZR201903013.htm
    [22]
    李帅, 苏永华, 杜俊旺. 基于突变特征的边坡工程失稳判据研究[J]. 防灾减灾工程学报, 2020, 40(6): 852-859. https://www.cnki.com.cn/Article/CJFDTOTAL-DZXK202006002.htm

    Li S, Su Y H, Du J W. Research on instability criterion of slope engineering based on mutation characteristics[J]. Engineering Journal of Disaster Prevention and Reduction, 2020, 40(6): 852-859(in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-DZXK202006002.htm
    [23]
    张浩, 崔永杰, 赵亚强. 尖点突变理论模型在岩质边坡的应用研究[J]. 宁夏大学学报: 自然科学版, 2018, 39(3): 223-226, 233. doi: 10.3969/j.issn.0253-2328.2018.03.007

    Zhang H, Cui Y J, Zhao Y Q. Application of cusp catastrophe theory model in rock slope[J]. Journal of Ningxia University: Natural Science Edition, 2018, 39(3): 223-226, 233(in Chinese with English abstract). doi: 10.3969/j.issn.0253-2328.2018.03.007
    [24]
    夏开宗, 刘秀敏, 陈从新, 等. 考虑突变理论的顺层岩质边坡失稳研究[J]. 岩土力学, 2015, 36(2): 477-486. https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX201502028.htm

    Xia K Z, Liu X M, Chen C X, et al. Study on instability of bedding rock slope considering catastrophe theory[J]. Geotechnical Mechanics, 2015, 36(2): 477-486(in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX201502028.htm
    [25]
    黄少平, 晏鄂川, 尹晓萌, 等. 不同临空条件的层状反倾岩质边坡倾倒变形几何特征参数影响规律[J]. 地质科技通报, 2021, 40(1): 159-165. doi: 10.19509/j.cnki.dzkq.2021.0111

    Huang S P, Yan E C, Yin X M, et al. Influence of geometric characteristics of slope inversion deformation of layered reverse rocks under different conditions[J]. Bulletin of Geological Science and Technology, 2021, 40(1): 159-165(in Chinese with English abstract). doi: 10.19509/j.cnki.dzkq.2021.0111
    [26]
    廖秋林, 李晓, 李守定, 等. 三峡库区千将坪滑坡的发生、地质地貌特征、成因及滑坡判据研究[J]. 岩石力学与工程学报, 2005, 24(17): 3146-3153. doi: 10.3321/j.issn:1000-6915.2005.17.023

    Liao Q L, Li X, Li S D, et al. Study on the occurrence, geological features, genesis and landslide criterion of Qianjiangping landslide in Three Gorges Reservoir area[J]. Rock Mechanics and Engineering, 2005, 24(17): 3146-3153(in Chinese with English abstract). doi: 10.3321/j.issn:1000-6915.2005.17.023
    [27]
    汪发武, 彭轩明, 霍志涛, 等. 三峡库区千将坪滑坡的高速远程滑动机理与库水位变动条件下树坪滑坡的变形模式[C]//第八届全国工程地质大会论文集. 2008.

    Wang F W, Peng X M, Huo Z T, et al. The mechanism of high-speed and long-distance sliding of Qianjiangping landslide in the Three Gorges Reservoir area and the deformation mode of Shuping landslide under the condition of reservoir water level change[C]//The papers of the Eighth National Engineering Geological Congress. 2008(in Chinese).
    [28]
    肖诗荣, 刘德富, 姜福兴, 等. 三峡库区千将坪滑坡地质力学模型试验研究[J]. 岩石力学与工程学报, 2010, 29(5): 1023-1030. https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX201005023.htm

    Xiao S R, Liu D F, Jiang F X, et al. Geomechanical model test of Qianjiangping landslide in Three Gorges Reservoir area[J]. Rock Mechanics and Engineering Journal, 2010, 29(5): 1023-1030(in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX201005023.htm
    [29]
    肖诗荣, 刘德富, 胡志宇. 三峡库区千将坪滑坡高速滑动机制研究[J]. 岩土力学, 2010, 31(11): 3531-3536. doi: 10.3969/j.issn.1000-7598.2010.11.029

    Xiao S R, Liu D F, Hu Z Y. Study on high-speed sliding mechanism of Qianjiangping landslide in Three Gorges Reservoir area[J]. Geotechnical Mechanics, 2010, 31(11): 3531-3536(in Chinese with English abstract). doi: 10.3969/j.issn.1000-7598.2010.11.029
    [30]
    肖莉丽, 殷坤龙, 刘艺梁, 等. 高速库岸岩质滑坡运动过程及速度分析[J]. 地质科技情报, 2012, 31(4): 117-122. https://www.cnki.com.cn/Article/CJFDTOTAL-DZKQ201204021.htm

    Xiao L L, Yin K L, Liu Y L, et al. High-speed reservoir rock landslide movement process and speed analysis[J]. Geological Science and Technology Information, 2012, 31(4): 117-122(in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-DZKQ201204021.htm
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article Views(430) PDF Downloads(51) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return