Volume 42 Issue 1
Jan.  2023
Turn off MathJax
Article Contents
Zhao Yanyan, Wu Changxiong, Shi Wenjie, Liu Dongqin, Wei Ketao, Zhang Ming, Tan Jun. Three-dimensional (3D) geological modeling and deep mineral targeting of the Tonglüshan-Tongshan Cu-Fe-Au deposit in southeastern Hubei Province[J]. Bulletin of Geological Science and Technology, 2023, 42(1): 112-125. doi: 10.19509/j.cnki.dzkq.2022.0095
Citation: Zhao Yanyan, Wu Changxiong, Shi Wenjie, Liu Dongqin, Wei Ketao, Zhang Ming, Tan Jun. Three-dimensional (3D) geological modeling and deep mineral targeting of the Tonglüshan-Tongshan Cu-Fe-Au deposit in southeastern Hubei Province[J]. Bulletin of Geological Science and Technology, 2023, 42(1): 112-125. doi: 10.19509/j.cnki.dzkq.2022.0095

Three-dimensional (3D) geological modeling and deep mineral targeting of the Tonglüshan-Tongshan Cu-Fe-Au deposit in southeastern Hubei Province

doi: 10.19509/j.cnki.dzkq.2022.0095
  • Received Date: 15 Jun 2021
  • Tonglüshan-Tongshan is a typical skarn Cu-Fe-Au deposit in southeastern Hubei Province. In this study, based on the deep-seated ore-prospecting, and the guidance of scientific deep metallogenic prediction theory, a comprehensive analysis of the metallogenic geological conditions and deep ore prospecting potential has been carried out. A 3D visualization study based on Surpac 3D modeling software was carried out. Based on the exploration line profile data and driling geological data, the 3D geological body solid model of the Tonglüshan-Tongshan Cu-Fe-Au deposit was constructed, including the orebody model, stratum model, skarn model, and intrusion contact surface model. Based on the drilling spectral data, the combination of F1, F2, and F3 factors was constructed by factor analysis, and the 3D geochemical model was constructed with the inverse distance weighted method. The gravity and magnetic homology anomalies were extracted from the gravity and magnetic data, and the 3D geophysical model was constructed. Four prediction elements were selected based on favorable prospecting information, including intrusive contact surface buffer, alteration buffer, F1 factor, and gravity and magnetic homology anomalies. The method of evidence weight was applied in comprehensive mineralization prediction to develop a 3D prospectivity model, and three potential exploration targets were delineated. After verifying with drilling, the scale of the main orebody has been expanded, and good prospecting results have been obtained.The result shows that the research on predicting and evaluating the Tonglüshan-Tongshan deposit has been extended to 3D space. It is anticipated that the results could provide a reference for deep mineral targeting of the deposits in the peripheral areas with the same type.

     

  • loading
  • [1]
    陈麒玉, 刘刚, 何珍文, 等. 面向地质大数据的结构-属性一体化三维地质建模技术现状与展望[J]. 地质科技通报, 2020, 39(4): 51-58. doi: 10.19509/j.cnki.dzkq.2020.0407

    Chen Q Y, Liu G, He Z W, et al. Current situation and prospect of structure-attribute integrated 3D geological modeling technology for geological big data[J]. Bulletin of Geological Science and Technology, 2020, 39(4): 51-58 (in Chinese with English abstract). doi: 10.19509/j.cnki.dzkq.2020.0407
    [2]
    李章林, 吴冲龙, 张夏林, 等. 地质科学大数据背景下的矿体动态建模方法探讨[J]. 地质科技通报, 2020, 39(4): 59-68. doi: 10.19509/j.cnki.dzkq.2020.0408

    Li Z L, Wu C L, Zhang X L, et al. Discussion on dynamic orebody modeling with geological science big data[J]. Bulletin of Geological Science and Technology, 2020, 39(4): 59-68 (in Chinese with English abstract). doi: 10.19509/j.cnki.dzkq.2020.0408
    [3]
    Houlding S W. 3D geoscientific modeling-computer technique for geological characterization[M]. [S. l. ]: Springer-Verlag, 1994.
    [4]
    向中林. 基于GIS的沂南金矿成矿地质条件分析及成矿预测[D]. 北京: 中国地质大学(北京), 2008.

    Xiang Z L. Analysis of ore-forming geological conditions and metallogenic prediction of Yinan gold deposit based on GIS[D]. Beijing: China University of Geosciences (Beijing), 2008 (in Chinese with English abstract).
    [5]
    刘小杨, 方洪宾, 薛林福. 西藏日喀则地区证据权重法金矿远景预测[J]. 吉林大学学报: 地球科学版, 2012, 42(增刊2): 198-204. https://www.cnki.com.cn/Article/CJFDTOTAL-CCDZ2012S2023.htm

    Liu X Y, Fang H B, Xue L F. Gold prediction using method of weights of evidence in the Rigaze area, Tibet[J]. Journal of Jilin University: Earth Science Edition, 2012, 42(S2): 198-204 (in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-CCDZ2012S2023.htm
    [6]
    向中林, 顾雪祥, 章永梅, 等. 基于三维地质建模及可视化的大比例尺深部找矿预测研究及应用: 以内蒙古柳坝沟矿区为例[J]. 地学前缘, 2014, 21(5): 227-235. https://www.cnki.com.cn/Article/CJFDTOTAL-DXQY201405022.htm

    Xiang Z L, Gu X X, Zhang Y M, et al. Research and application of large scale deep mineral prospecting prediction based on 3D geological modeling and visualization: A case from Liubagou gold field, Inner Mongolia[J]. Earth Science Frontiers, 2014, 21(5): 227-235 (in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-DXQY201405022.htm
    [7]
    Li X H, Yuan F, Zhang M M, et al. Three-dimensional mineral prospectivity modeling for targeting of concealed mineralization within the Zhonggu iron orefield, Ningwu Basin, China[J]. Ore Geology Reviews, 2015, 71: 633-654. doi: 10.1016/j.oregeorev.2015.06.001
    [8]
    Yang F, Wang G W, Santosh M, et al. Delineation of potential exploration targets based on 3D geological modeling: A case study from the Laoangou Pb-Zn-Ag polymetallic ore deposit, China[J]. Ore Geology Reviews, 2017, 89: 228-252. doi: 10.1016/j.oregeorev.2017.06.013
    [9]
    Zhang M M, Zhou G Y, Shen L, et al. Comparison of 3D prospectivity modeling methods for Fe-Cu skarn deposits: A case study of the Zhuchong Fe-Cu deposit in the Yueshan orefield (Anhui), eastern China[J]. Ore Geology Reviews, 2019, 114: 103-126.
    [10]
    陈建平, 吕鹏, 吴文, 等. 基于三维可视化技术的隐伏矿体预测[J]. 地学前缘, 2007, 14(5): 54-62. doi: 10.3321/j.issn:1005-2321.2007.05.006

    Chen J P, Lü P, Wu W, et al. A 3D method for predicting blind orebodies, based on a 3D visualization model and its application[J]. Earth Science Frontiers, 2007, 14(5): 54-62 (in Chinese with English abstract). doi: 10.3321/j.issn:1005-2321.2007.05.006
    [11]
    肖克炎, 李楠, 孙莉, 等. 基于三维信息技术大比例尺三维立体矿产预测方法及途径[J]. 地质学刊, 2012, 36(3): 229-236. doi: 10.3969/j.issn.1674-3636.2012.03.229

    Xiao K Y, Li N, Sun L, et al. Large scale 3D mineral prediction methods and channels based on 3D information technology[J]. Journal of Geology, 2012, 36(3): 229-236 (in Chinese with English abstract). doi: 10.3969/j.issn.1674-3636.2012.03.229
    [12]
    李晓晖, 袁峰, 张明明, 等. 姚家岭锌金多金属矿床围岩蚀变三维空间定量分析研究[J]. 岩石学报, 2016, 32(2): 390-398. https://www.cnki.com.cn/Article/CJFDTOTAL-YSXB201602009.htm

    Li X H, Yuan F, Zhang M M, et al. 3D spatial quantitative analysis of alteration in Yaojialing zinc-gold polymetallic deposit[J]. Acta Petrologica Sinica, 2016, 32(2): 390-398 (in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-YSXB201602009.htm
    [13]
    张夏林, 吴冲龙, 周琦, 等. 基于勘查大数据和数据集市的锰矿床三维地质建模[J]. 地质科技通报, 2020, 39(4): 12-20. doi: 10.19509/j.cnki.dzkq.2020.0402

    Zhang X L, Wu C L, Zhou Q, et al. Three-dimensional geological modeling of manganese deposits based on exploration big data and data market[J]. Bulletin of Geological Science and Technology, 2020, 39(4): 12-20 (in Chinese with English abstract). doi: 10.19509/j.cnki.dzkq.2020.0402
    [14]
    田宜平, 刘维安, 张夏林. 基于等角度变比例投影的矿体轮廓线自动匹配方法研究[J]. 地质科技通报, 2020, 39(1): 175-180. doi: 10.19509/j.cnki.dzkq.2020.0119

    Tian Y P, Liu W A, Zhang X L. Automatic matching of ore body contour line based on equal-angle and variable proportion projection[J]. Bulletin of Geological Science and Technology, 2020, 39(1): 175-180 (in Chinese with English abstract). doi: 10.19509/j.cnki.dzkq.2020.0119
    [15]
    Chen J P, Shi R, Chen Z P, et al. 3D positional and quantitative prediction of the Xiaoqinling gold ore belt in Tongguan, Shaanxi, China[J]. Acta Geologica Sinica: English Edition, 2012, 86(3): 653-660. doi: 10.1111/j.1755-6724.2012.00693.x
    [16]
    Yuan F, Li X H, Zhang M M, et al. Three-dimensional weights of evidence-based prospectivity modeling: A case study of the Baixiangshan mining area, Ningwu Basin, Middle and Lower Yangtze Metallogenic Belt, China[J]. Journal of Geochemical Exploration, 2014, 145: 82-97. doi: 10.1016/j.gexplo.2014.05.012
    [17]
    Nielsen S H H, Cunningham F, Hay R, et al. 3D prospectivity modelling of orogenic gold in the Marymia Inlier, Western Australia[J]. Ore Geology Reviews, 2015, 71: 578-591. doi: 10.1016/j.oregeorev.2015.02.001
    [18]
    Payne C E, Cunningham F, Peters K J, et al. From 2D to 3D: Prospectivity modelling in the Taupo volcanic zone, New Zealand[J]. Ore Geology Reviews, 2015, 71: 558-577. doi: 10.1016/j.oregeorev.2014.11.013
    [19]
    Li N, Song X L, Xiao K Y, et al. Part Ⅱ: A demonstration of integrating multiple-scale 3D modelling into GIS-based prospectivity analysis: A case study of the Huayuan-Malichang district, China[J]. Ore Geology Reviews, 2018, 95: 292-305. doi: 10.1016/j.oregeorev.2018.02.034
    [20]
    马光. 鄂东南铜绿山铜铁金矿床地质特征、成因模式及找矿方向[D]. 长沙: 中南大学, 2005.

    Ma G. Geological features, mineralization model and prospecting areas of Tonglüshan Cu-Fe-Au deposit, Southeast Hubei[D]. Changsha: Central South University, 2005 (in Chinese with English abstract).
    [21]
    赵海杰, 毛景文, 向君峰, 等. 湖北铜绿山矿床石英闪长岩的矿物学及Sr-Nd-Pb同位素特征[J]. 岩石学报, 2010, 26(3): 768-784. https://www.cnki.com.cn/Article/CJFDTOTAL-YSXB201003011.htm

    Zhao H J, Mao J W, Xiang J F, et al. Mineralogy and Sr-Nd-Pb isotopic compositions of quartz diorite in Tonglüshan deposit, Hubei Province[J]. Acta Petrologica Sinica, 2010, 26(3): 768-784 (in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-YSXB201003011.htm
    [22]
    王彦博, 顾雪祥, 张宗保, 等. 湖北铜绿山矽卡岩型铜铁矿床同位素地球化学研究[J]. 现代地质, 2011, 25(4): 730-739. https://www.cnki.com.cn/Article/CJFDTOTAL-XDDZ201104015.htm

    Wang Y B, Gu X X, Zhang Z B, et al. Isotopic geochemistry of the Tonglüshan Cu-Fe skarn type deposit in Hubei Province[J]. Geoscience, 2011, 25(4): 730-739 (in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-XDDZ201104015.htm
    [23]
    张宗保. 湖北铜绿山铜铁矿床成矿机制探讨[J]. 地学前缘, 2010, 17(5): 296-305. https://www.cnki.com.cn/Article/CJFDTOTAL-DXQY201005032.htm

    Zhang Z B. A discussion on the genetic mechanism of Tonglüshan skarn Cu-Fe deposits, Hubei Province[J]. Earth Science Frontiers, 2010, 17(5): 296-305 (in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-DXQY201005032.htm
    [24]
    赵海杰. 湖北铜绿山矽卡岩型铜铁矿床地球化学及成矿机制[D]. 北京: 中国地质科学院, 2010.

    Zhao H J. The mineralization mechanism and geochemistry of the Tonglüshan skarn Cu-Fe deposit, southeastern Hubei, China[D]. Beijing: Chinese Academy of Geological Sciences, 2010 (in Chinese with English abstract).
    [25]
    黄圭成, 夏金龙, 丁丽雪, 等. 鄂东南地区铜绿山岩体的侵入期次和物源: 锆石U-Pb年龄和Hf同位素证据[J]. 中国地质, 2013, 40(5): 1392-1408. https://www.cnki.com.cn/Article/CJFDTOTAL-DIZI201305005.htm

    Huang G C, Xia J L, Ding L X, et al. Stage division and origin of Tonglüshan pluton in Southeast Hubei Province: Evidence from zircon U-Pb ages and Hf isotopes[J]. Geology in China, 2013, 40(5): 1392-1408 (in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-DIZI201305005.htm
    [26]
    常印佛, 刘湘培, 吴言昌. 长江中下游铜铁成矿带[M]. 北京: 地质出版社, 1991.

    Chang Y F, Liu X P, Wu Y C. Copper-iron deposits in the middle-lower Yangtze valley metallogenic belt[M]. Beijing: Geo-logical Publishing House, 1991 (in Chinese).
    [27]
    Mao J W, Chen M H, Yuan S D. Geological characteristics of the Qinhang (or Shihang) metallogenic belt in South China and spatial temporal distribution regularity of mineral deposits[J]. Acta Geologica Sinica, 2011, 85(5): 636-658.
    [28]
    纪敏, 赵新福, 曾丽平, 等. 鄂东南铜绿山矿床石榴子石显微结构及微区成分对成矿过程的指示[J]. 岩石学报, 2018, 34(9): 2716-2732. https://www.cnki.com.cn/Article/CJFDTOTAL-YSXB201809014.htm

    Ji M, Zhao X F, Zeng L P, et al. Microtexture and geochemistry of garnets from Tonglüshan skarn Cu-Fe deposit in the southeastern Hubei metallogenic province: Implications for ore-forming process[J]. Acta Petrologica Sinica, 2018, 24(9): 2716-2732 (in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-YSXB201809014.htm
    [29]
    舒全安, 陈培良, 程建荣. 鄂东铁铜矿产地质[M]. 北京: 冶金工业出版社, 1992.

    Shu Q A, Chen P L, Cheng J R. Geology of iron copper deposits in eastern Hubei[M]. Beijing: Metallurgical Industry Press, 1992 (in Chinese).
    [30]
    陈华勇, 张世涛, 初高彬, 等. 鄂东南矿集区典型矽卡岩-斑岩矿床蚀变矿物短波红外(SWIR)光谱研究与勘查应用[J]. 岩石学报, 2019, 35(12): 3629-3643. https://www.cnki.com.cn/Article/CJFDTOTAL-YSXB201912005.htm

    Chen H Y, Zhang S T, Chu G B, et al. The short wave infrared (SWIR) spectral characteristics of alteration minerals and applications for ore exploration in the typical skarn-porphyry deposits, Edong ore district, eastern China[J]. Acta Petrologica Sinica, 2019, 35(12): 3629-3643 (in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-YSXB201912005.htm
    [31]
    Zhou T F, Wang S W, Fan Y, et al. A review of the intracontinental porphyry deposits in the Middle-Lower Yangtze River Valley metallogenic belt, Eastern China[J]. Ore Geology Reviews, 2015, 65: 433-456.
    [32]
    刘继顺, 马光, 舒广龙. 湖北铜绿山矽卡岩型铜铁矿床中隐爆角砾岩型金(铜)矿体的发现及其找矿前景[J]. 矿床地质, 2005, 24(5): 60-69. https://www.cnki.com.cn/Article/CJFDTOTAL-KCDZ200505007.htm

    Liu J S, Ma G, Shu G L. Discovery of cryptoexplosive breccia type Cu (-Au) orebodies in Tonglüshan skarn-type Cu-Fe deposit of Hubei Province and ore-searching vista[J]. Mineral Deposits, 2005, 24(5): 60-69 (in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-KCDZ200505007.htm
    [33]
    谢桂青, 毛景文, 李瑞玲, 等. 鄂东南地区Cu-Au-Mo-(W)矿床的成矿时代及其成矿地球动力学背景探讨: 辉钼矿Re-Os同位素年龄[J]. 矿床地质, 2006, 25(1): 43-52. https://www.cnki.com.cn/Article/CJFDTOTAL-KCDZ200601005.htm

    Xie G Q, Mao J W, Li R L, et al. Metallogenic epoch and geodynamic framework of Cu-Au-Mo-(W) deposits in southeastern Hubei Province: Constraints from Re-Os molybdenite ages[J]. Mineral Deposits, 2006, 25(1): 43-52 (in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-KCDZ200601005.htm
    [34]
    谢桂青, 赵海杰, 赵财胜, 等. 鄂东南铜绿山矿田矽卡岩型铜铁金矿床的辉钼矿Re-Os同位素年龄及其地质意义[J]. 矿床地质, 2009, 28(3): 227-239. https://www.cnki.com.cn/Article/CJFDTOTAL-KCDZ200903002.htm

    Xie G Q, Zhao H J, Zhao C S, et al. Re-Os dating of molybdenite from Tonglüshan ore district in southeastern Hubei Province, Middle-Lower Yangtze River belt and its geological significance[J]. Mineral Deposits, 2009, 28(3): 227-239 (in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-KCDZ200903002.htm
    [35]
    魏克涛, 李享洲, 张晓兰. 铜绿山铜铁矿床成矿特征及找矿前景[J]. 资源环境与工程, 2007, 21(增刊1): 41-46, 56. https://www.cnki.com.cn/Article/CJFDTOTAL-HBDK2007S1011.htm

    Wei K T, Li H Z, Zhang X L. The characteristics of Tonglüshan copper-iron deposit and its prospecting future[J]. Resources Environment & Engineering, 2007, 21(S1): 41-46, 56 (in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-HBDK2007S1011.htm
    [36]
    张世涛, 陈华勇, 韩金生, 等. 鄂东南铜绿山大型铜铁金矿床成矿岩体年代学、地球化学特征及成矿意义[J]. 地球化学, 2018, 47(3): 240-256. https://www.cnki.com.cn/Article/CJFDTOTAL-DQHX201803002.htm

    Zhang S T, Chen H Y, Han J S, et al. Geochronology, geochemistry, and mineralization of quartz monzodiorite and quartz monzodiorite porphyry in Tonglüshan Cu-Fe-Au deposit, Edongnan ore district, China[J]. Geochimica, 2018, 47(3): 240-256 (in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-DQHX201803002.htm
    [37]
    闫芳, 魏克涛, 王宇, 等. 湖北大冶铜绿山铜铁矿床找矿预测模型及找矿突破思路[J]. 资源环境与工程, 2020, 34(4): 494-500. https://www.cnki.com.cn/Article/CJFDTOTAL-HBDK202004003.htm

    Yan F, Wei K T, Wang Y, et al. Prediction model and breakthrough in prospecting of Tonglüshan Cu-Fe deposit in Daye City, Hubei Province[J]. Resources Environment & Engineering, 2020, 34(4): 494-500 (in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-HBDK202004003.htm
    [38]
    蔡恒安, 徐江嬿, 陈松林, 等. 鄂东南矿集区深部找矿进展及下步找矿思路[J]. 资源环境与工程, 2020, 34(4): 501-505, 511. https://www.cnki.com.cn/Article/CJFDTOTAL-HBDK202004004.htm

    Cai H A, Xu J Y, Chen S L, et al. Deep prospecting progress and next prospecting thoughts of Southeast Hubei mining area[J]. Resources Environment & Engineering, 2020, 34(4): 501-505, 511 (in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-HBDK202004004.htm
    [39]
    朱丹, 刘天佑, 杨宇山. 鄂东南地区岩体重磁异常场特征及找矿方向[J]. 物探与化探, 2017, 41(4): 587-593. https://www.cnki.com.cn/Article/CJFDTOTAL-WTYH201704001.htm

    Zhu D, Liu T Y, Yang Y S. Gravity and magnetic anomalies characteristics of rock bodies and ore-prospecting orientation in the southeast of Hubei Province[J]. Geophysical and Geochemical Exploration, 2017, 41(4): 587-593 (in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-WTYH201704001.htm
    [40]
    陈建平, 于萍萍, 史蕊, 等. 区域隐伏矿体三维定量预测评价方法研究[J]. 地学前缘, 2014, 21(5): 211-220. https://www.cnki.com.cn/Article/CJFDTOTAL-DXQY201405020.htm

    Chen J P, Yu P P, Shi R, et al. Research on three-dimensional quantitative prediction and evaluation methods of regional concealed ore bodies[J]. Earth Science Frontiers, 2014, 21(5): 211-220 (in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-DXQY201405020.htm
    [41]
    Agterberg F P. Computer programs for exploration[J]. Science, 1989, 245: 76-81.
    [42]
    Agterberg F P, Cheng Q M. Conditional independence test for weights-of-evidence modeling[J]. Natural Resources Research, 2002, 11(4): 249-255.
    [43]
    Carranza E J M. Weights of evidence modeling of mineral potential: A case study using small number of prospects, Abra, Philippines[J]. Natural Resources Research, 2004, 13(3): 173-187.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article Views(655) PDF Downloads(121) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return