Volume 42 Issue 3
May  2023
Turn off MathJax
Article Contents
Wan Li, Huang Xiu, Zhang Zhijie, Yuan Xuanjun, Chen Xingyu. A review of sedimentary forward modeling methods for different sedimentary systems of clastic rock series[J]. Bulletin of Geological Science and Technology, 2023, 42(3): 153-162. doi: 10.19509/j.cnki.dzkq.2022.0105
Citation: Wan Li, Huang Xiu, Zhang Zhijie, Yuan Xuanjun, Chen Xingyu. A review of sedimentary forward modeling methods for different sedimentary systems of clastic rock series[J]. Bulletin of Geological Science and Technology, 2023, 42(3): 153-162. doi: 10.19509/j.cnki.dzkq.2022.0105

A review of sedimentary forward modeling methods for different sedimentary systems of clastic rock series

doi: 10.19509/j.cnki.dzkq.2022.0105
  • Received Date: 13 Oct 2021
  • More and more attention has been paid to the sedimentary forward modeling (SFM) since the study on the sedimentology is targeted toward quantification, process orientation and systematization. This review first stated the main input and output data of the current sedimentary forward modeling and sorted out the determination methods of the input parameters. Then it reviewed the classification methods of the sedimentary forward modeling, and the classification principles included principle of simulation, number of simulation processes, types of simulation results, simulation dimension, simulation scale, data fidelity and source region covering source-sink system. Subsequently, it introduced the sedimentary forward modeling methods for the different sedimentary systems of clastic series, including hillside landform, river and deep-draft waterway, delta, lobe and landslide. It also described some classic simulation programs for the individual series, indicated the sedimentary characteristics of this series to be essentially simulated and their corresponding principles of simulation and covered multiple simulation methods as much as possible to expand the understanding of the sedimentary forward modeling. Finally, it looked into the development of the sedimentary forward modeling believed it would be targeted toward the three-dimension visualization, multi-process integration and multi-discipline integration, proposed to strengthen the training of compound talents in computer, mathematics, mechanics and geosciences; strengthened the experimental study on the sedimentary forward modeling hypothesis to study the sedimentation theory; tried multiple simulation methods and shifted the application foremost to the research and development foremost.

     

  • loading
  • [1]
    Burgess P M, Roberts D, Bally A. A brief review of developments in stratigraphic forward modelling, 2000-2009[J]. Regional Geology and Tectonics: Principles of Geologic Analysis, 2012, 1: 379-404. http://www.sciencedirect.com/science/article/pii/B9780444530424000145
    [2]
    Paola C. Quantitative models of sedimentary basin filling[J]. Sedimentology, 2000, 47: 121-178. doi: 10.1046/j.1365-3091.2000.00006.x
    [3]
    Potter P E, Pettijohn F J. Paleocurrents and basin analysis (1963-1976)[M]. New York: Springer, 1977.
    [4]
    Pettijohn F J. Sedimentary rocks[M]. New York: Harper & Row, 1975.
    [5]
    Schlee J. Upland gravels of southern Maryland[J]. Geological Society of America Bulletin, 1957, 68(10): 1371-410. doi: 10.1130/0016-7606(1957)68[1371:UGOSM]2.0.CO;2
    [6]
    Sloss L. Stratigraphic models in exploration[J]. AAPG Bulletin, 1962, 46(7): 1050. http://archives.datapages.com/data/meta/sepm/journals/v01-32/data/032/032003/pdfs/0415_firstpage.pdf
    [7]
    Harbaugh J W, Bonham-Carter G. Computer simulation in geology[M]. [S. l. ]: Stanford Univ. Calif., 1970.
    [8]
    Allen J R. Physical processes of sedimentation[M]. New York: American Elsevier Pub. Co., 1970.
    [9]
    Pitman Iii W C. Relationship between eustacy and stratigraphic sequences of passive margins[J]. Geological Society of America Bulletin, 1978, 89(9): 1389-1403. doi: 10.1130/0016-7606(1978)89<1389:RBEASS>2.0.CO;2
    [10]
    Jordan T E. Thrust loads and foreland basin evolution, Cretaceous, Western United States[J]. AAPG Bulletin, 1981, 65(12): 2506-2520. http://terra.rice.edu/department/faculty/morganj/ESCI536/Readings/sevier/Jordan-AAPGBull1981.pdf
    [11]
    Tetzlaff D M, Harbaugh J W. Simulating clastic sedimentation[M]. New York: Springer, 1989.
    [12]
    Strobel J, Cannon R, Christopher G S, et al. Interactive (Sedpak) simulation of clastic and carbonate sediments in shelf to basin settings[J]. Computers & Geosciences, 1989, 15(8): 1279-1290. http://www.onacademic.com/detail/journal_1000034998432410_b42b.html
    [13]
    Granjeon D, Joseph P. Concepts and applications of a 3-D multiple lithology, diffusive model in stratigraphic modeling[C]//Harbaugh J W, Watney W L, Rankey E C, et al. Numerical experiments in stratigraphy: Recent advances in stratigraphic and sedimentologic computer simulations. [S. l. ]: [s. n. ], 1999: 197-210.
    [14]
    Syvitski J P, Milliman J D. Geology, geography, and humans battle for dominance over the delivery of fluvial sediment to the coastal ocean[J]. The Journal of Geology, 2007, 115(1): 1-19. doi: 10.1086/509246
    [15]
    Hall B, Meiburg E, Kneller B. Channel formation by turbidity currents: Navier-stokes-based linear stability analysis[J]. Journal of Fluid Mechanics, 2008, 615: 185-210. doi: 10.1017/S0022112008003467
    [16]
    Pyrcz M J, Catuneanu O, Deutsch C V. Stochastic surface-based modeling of turbidite lobes[J]. AAPG Bulletin, 2005, 89(2): 177-191. doi: 10.1306/09220403112
    [17]
    Salles T, Duclaux G. Combined hillslope diffusion and sediment transport simulation applied to landscape dynamics modelling[J]. Earth Surface Processes and Landforms, 2015, 40(6): 823-839. doi: 10.1002/esp.3674
    [18]
    Pyrcz M J, Sech R P, Covault J A, et al. Stratigraphic rule-based reservoir modeling[J]. Bulletin of Canadian Petroleum Geology, 2015, 63(4): 287-303. doi: 10.2113/gscpgbull.63.4.287
    [19]
    杜威, 纪友亮, 李其海, 等. 不同沉积过程尺度下正演数值模拟研究进展及油气地质意义[J]. 油气地质与采收率, 2020, 27(2): 62-71. https://www.cnki.com.cn/Article/CJFDTOTAL-YQCS202002009.htm

    Du W, Ji Y L, Li Q H, et al. Sedimentary forward numerical modeling at different sedimentary scales: Progress and hydrocarbon significance[J]. Petroleum Geology and Recovery Efficiency, 2020, 27(2): 62-71(in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-YQCS202002009.htm
    [20]
    Li J, Liu P, Sun S, et al. Sedapp V2021: A nonlinear diffusion-based forward stratigraphic model for shallow marine environments[J]. Geoscientific Model Development, 2021, 14(8): 4925-4937. doi: 10.5194/gmd-14-4925-2021
    [21]
    Sylvester Z, Pirmez C, Cantelli A. A model of submarine channel-levee evolution based on channel trajectories: Implications for stratigraphic architecture[J]. Marine and Petroleum Geology, 2011, 28(3): 716-727. doi: 10.1016/j.marpetgeo.2010.05.012
    [22]
    Refice A, Giachetta E, Capolongo D. Signum: A Matlab, TIN-based landscape evolution model[J]. Computers & Geosciences, 2012, 45: 293-303. http://www.researchgate.net/profile/Domenico_Capolongo/publication/220027603_SIGNUM_A_Matlab_TIN-based_landscape_evolution_model/links/00b4951a098c5d0a2f000000.pdf?ev=pub_ext_doc_dl_meta
    [23]
    杨蓉. 几种地形演化的数值模拟模型简述[J]. 地震地质, 2017, 39(6): 1173-1184. doi: 10.3969/j.issn.0253-4967.2017.06.006

    Yang R. A brief review of several models of topographic evolution[J]. Seismology and Geology, 2017, 39(6): 1173-1184(in Chinese with English abstract). doi: 10.3969/j.issn.0253-4967.2017.06.006
    [24]
    Yi A. Modeling of flow and migration of subaerial and submarine meandering channels[D]. [S. l. ]: University of South Carolina, 2006.
    [25]
    舒晓, 金宝强, 缪飞飞, 等. 基于曲流河演化模拟的海上大井距油田点坝内部构型建模方法[J]. 复杂油气藏, 2019, 12(1): 38-43. https://www.cnki.com.cn/Article/CJFDTOTAL-FZYQ201901008.htm

    Shu X, Jin B Q, Miao F F, et al. Internal architecture modeling of point bar in offshore oilfields with large well-spacing based on evolution simulation of meandering river[J]. Complex Hydrocarbon Reservoirs, 2019, 12(1): 38-43(in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-FZYQ201901008.htm
    [26]
    Liang M, Voller V, Paola C. A reduced-complexity model for river delta formation: Part 1. Modeling deltas with channel dynamics[J]. Earth Surface Dynamics, 2015, 3(1): 67-86. doi: 10.5194/esurf-3-67-2015
    [27]
    Liang M, Geleynse N, Edmonds D, et al. A reduced-complexity model for river delta formation: Part 2. Assessment of the flow routing scheme[J]. Earth Surface Dynamics, 2015, 3(1): 87-104. doi: 10.5194/esurf-3-87-2015
    [28]
    Bertoncello A, Sun T, Li H, et al. Conditioning surface-based geological models to well and thickness data[J]. Mathematical Geosciences, 2013, 45(7): 873-893. doi: 10.1007/s11004-013-9455-4
    [29]
    Horton P, Jaboyedoff M, Rudaz B E, et al. Flow-R, a model for susceptibility mapping of debris flows and other gravitational hazards at a regional scale[J]. Natural Hazards and Earth System Sciences, 2013, 13(4): 869-885. doi: 10.5194/nhess-13-869-2013
    [30]
    Miura H. Fusion analysis of optical satellite images and digital elevation model for quantifying volume in debris flow disaster[J]. Remote Sensing, 2019, 11(9): 1096. doi: 10.3390/rs11091096
    [31]
    Rickenmann D. Empirical relationships for debris flows[J]. Natural Hazards, 1999, 19(1): 47-77. doi: 10.1023/A:1008064220727
    [32]
    刘泽, 李三忠, Bukhari S W H, 等. 动态古地貌再造: Badlands软件在盆地分析中的应用[J]. 古地理学报, 2020, 22(1): 29-38. https://www.cnki.com.cn/Article/CJFDTOTAL-GDLX202001002.htm

    Liu Z, Li S Z, Bukhari S W H, et al. Reconstruction of dynamic palaeogeomorphy: Application of Badlands software in basin analysis[J]. Journal of Palaeogeography: Chinese Edition, 2020, 22(1): 29-38(in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-GDLX202001002.htm
    [33]
    李少华, 刘显太, 王军, 等. 基于沉积过程建模算法Alluvsim的改进[J]. 石油学报, 2013, 34(1): 140-144. https://www.cnki.com.cn/Article/CJFDTOTAL-SYXB201301016.htm

    Li S H, Liu X T, Wang J, et al. Improvement of the alluvsim algorithm modeling based on depositional processes[J]. Acta Petrolei Sinica, 2013, 34(1): 140-144(in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-SYXB201301016.htm
    [34]
    黄秀, 刘可禹, 邹才能, 等. 鄱阳湖浅水三角洲沉积体系三维定量正演模拟[J]. 地球科学: 中国地质大学学报, 2013, 38(5): 1005-1013. https://www.cnki.com.cn/Article/CJFDTOTAL-DQKX201305012.htm

    Huang X, Liu K Y, Zou C N, et al. Forward stratigraphic modelling of the depositional process and evolution of shallow water deltas in the Poyang Lake, southern China[J]. Earth Science: Journal of China University of Geosciences, 2013, 38(5): 1005-1013(in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-DQKX201305012.htm
    [35]
    Ikeda S, Parker G, Sawai K. Bend theory of river meanders: Part 1. Linear development[J]. Journal of Fluid Mechanics, 1981, 112: 363-377. http://www.onacademic.com/detail/journal_1000035831603110_01e4.html
    [36]
    冯文杰, 吴胜和, 张可, 等. 曲流河浅水三角洲沉积过程与沉积模式探讨: 沉积过程数值模拟与现代沉积分析的启示[J]. 地质学报, 2017, 91(9): 2047-2064. https://www.cnki.com.cn/Article/CJFDTOTAL-DZXE201709009.htm

    Feng W J, Wu S H, Zhang K, et al. Depositional process and sedimentary model of meandering-river shallow delta: Insights from numerical simulation and modern deposition[J]. Acta Geologica Sinica, 2017, 91(9): 2047-2064 (in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-DZXE201709009.htm
    [37]
    贺婷婷, 谈心, 段太忠, 等. 综合沉积正演与多点地质统计模拟辫状河三角洲: 以塔河T区为例[J]. 地质科技通报, 2021, 40(3): 54-66. doi: 10.19509/j.cnki.dzkq.2021.0301

    He T T, Tan X, Duan T Z, et al. Integrated sedimentary forward modeling and multipoint geostatistics in braided river delta simulation: A case from Block T of Tahe Oilfield[J]. Bulletin of Geological Science and Technology, 2021, 40(3): 54-66(in Chinese with English abstract). doi: 10.19509/j.cnki.dzkq.2021.0301
    [38]
    张文彪, 段太忠, 刘彦锋, 等. 定量地质建模技术应用现状与发展趋势[J]. 地质科技情报, 2019, 38(3): 264-275. https://www.cnki.com.cn/Article/CJFDTOTAL-DZKQ201903029.htm

    Zhang W B, Duang T Z, Liu Y F, et al. Application status and development trend of quantitative geological modeling[J]. Geological Science and Technology Information, 2019, 38(3): 264-275(in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-DZKQ201903029.htm
    [39]
    谷宇峰, 张道勇, 鲍志东, 等. 利用GS-LightGBM机器学习模型识别致密砂岩地层岩性[J]. 地质科技通报, 2021, 40(4): 224-234. doi: 10.19509/j.cnki.dzkq.2021.0416

    Gu Y F, Zhang D Y, Bao Z D, et al. Lithology prediction of tight sandstone formation using GS-LightGBM hybrid machine learning model[J]. Bulletin of Geological Science and Technology, 2021, 40(4): 224-234(in Chinese with English abstract). doi: 10.19509/j.cnki.dzkq.2021.0416
    [40]
    Harris A D, Baumgardner S E, Sun T, et al. A poor relationship between sea level and deep-water sand delivery[J]. Sedimentary Geology, 2018, 370: 42-51. http://www.sciencedirect.com/science?_ob=ShoppingCartURL&_method=add&_eid=1-s2.0-S0037073818300939&originContentFamily=serial&_origin=article&_ts=1523590335&md5=6aa41c84fc003cd7198367dbe56d0254
    [41]
    Zhang J, Kim W, Olariu C, et al. Accommodation-versus supply-dominated systems for sediment partitioning to deep water[J]. Geology, 2019, 47(5): 419-422. http://www.researchgate.net/publication/331657015_Accommodation-_versus_supply-dominated_systems_for_sediment_partitioning_to_deep_water
    [42]
    高抒. 海洋沉积地质过程模拟: 性质与问题及前景[J]. 海洋地质与第四纪地质, 2011, 31(5): 1-7. https://www.cnki.com.cn/Article/CJFDTOTAL-HYDZ201105003.htm

    Gao S. Numerical modeling of marine sedimentary processes: The nature, scientific problems, and prospect[J]. Marine Geology & Quaternary Geology, 2011, 31(5): 1-7(in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-HYDZ201105003.htm
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article Views(381) PDF Downloads(84) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return