Volume 42 Issue 3
May  2023
Turn off MathJax
Article Contents
Chen Weiling, Xiao Fan. Advances in numerical modeling of metallogenic dynamics: A review of theories, methods and technologies[J]. Bulletin of Geological Science and Technology, 2023, 42(3): 234-249. doi: 10.19509/j.cnki.dzkq.2022.0125
Citation: Chen Weiling, Xiao Fan. Advances in numerical modeling of metallogenic dynamics: A review of theories, methods and technologies[J]. Bulletin of Geological Science and Technology, 2023, 42(3): 234-249. doi: 10.19509/j.cnki.dzkq.2022.0125

Advances in numerical modeling of metallogenic dynamics: A review of theories, methods and technologies

doi: 10.19509/j.cnki.dzkq.2022.0125
  • Received Date: 08 Nov 2021
  • Based on geological surveys and experimental data, numerical modeling of metallogenic dynamics (NMMD) establishes a mathematical model (mathematical-physical equation) that quantitatively characterizes metallogenic processes using the basic laws of mathematics, physics and chemistry. Then, using the finite element or finite difference method, the model is built through efficient computer calculation, simulating the metallogenic dynamic process and its metallogenic response, revealing metallogenic law and guiding prospecting. NMMD integrates theories and methods of geology, mathematics, physics, chemistry, computers and other disciplines and has distinct characteristics of interdisciplinary integration. In recent years, driven by the rapid development of computational science and mathematical geology, important progress has been made in NMMD. This paper summarizes the basic theories and methods of NMMD, compares the characteristics of four metallogenic numerical simulation software programs, and introduces the development and application status of NMMD with progress of the author′s team in the past decade. The main conclusions and understandings are as follows: ①Multi-field coupled metallogenic dynamics numerical simulation is the only feasible method to reproduce the large-scale complex metallogenic process. With the rapid development and improvement of high-performance computing technology and nonlinear dynamics theory, it becomes one of the research hotspots and development directions of modern mathematical geoscience. It is important to reveal the metallogenic mechanism and obtain mineral exploration information, which has great potential for development; ②At present, there are some limitations in NMMD, such as uncertain simulation parameters and incomplete coupling of multifield processes, which will be the focus of its future development. Numerous studies have been devoted to solving these problems; ③Under a new paradigm of scientific research driven by big data, a combination of NMMD and machine learning can effectively invert the metallogenic process and quantitatively predict mineral resources. This method is an important breakthrough in the application of NMMD in deposit genesis and mineral exploration. This paper clarifies the basic methods and key problems of NMMD in promoting the study of deposit genesis and exploration, and expounds the frontier direction of NMMD, which provides basic guidance for the study of computational modeling of metallogenic dynamics.

     

  • loading
  • [1]
    於崇文, 岑况, 鲍征宇, 等. 热液成矿作用动力学[M]. 武汉: 中国地质大学出版社, 1993.

    Yu C W, Cen K, Bao Z Y, et al. Hydrothermal metallogenic dynamics[M]. Wuhan: China University of Geosciences Press, 1993(in Chinese).
    [2]
    於崇文. 广义地球化学动力学[J]. 大自然探索, 1996, 15(4): 14-17. https://www.cnki.com.cn/Article/CJFDTOTAL-DZRT604.005.htm

    Yu C W. Generalized geochemical dynamics[J]. Nature Exploration, 1996, 15(4): 14-17(in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-DZRT604.005.htm
    [3]
    於崇文, 岑况, 鲍征宇, 等. 成矿作用动力学[M]. 北京: 地质出版社, 1998.

    Yu C W, Cen K, Bao Z Y, et al. Metallogenic dynamics[M]. Beijing: Geological Publishing House, 1998(in Chinese).
    [4]
    Hobbs B E, Zhang Y, Ord A, et al. Application of coupled deformation, fluid flow, thermal and chemical modeling to predictive mineral exploration[J]. Journal of Geochemical Exploration, 2000, 69: 505-509. http://www.sciencedirect.com/science/article/pii/S0375674200000996
    [5]
    Schardt C, Large R R. New insights into the genesis of volcanic-hosted massive sulfide deposits on the seafloor from numerical modeling studies[J]. Ore Geology Reviews, 2009, 35(3/4): 333-351. http://www.onacademic.com/detail/journal_1000035075245310_af5c.html
    [6]
    Ord A, Hobbs B E, Lester D R. The mechanics of hydrothermal systems: I. Ore systems as chemical reactors[J]. Ore Geology Reviews, 2012, 49: 1-44. doi: 10.1016/j.oregeorev.2012.08.003
    [7]
    Lamy-Chappuis B, Heinrich C A, Driesner T, et al. Mechanisms and patterns of magmatic fluid transport in cooling hydrous intrusions[J]. Earth and Planetary Science Letters, 2020, 535: 116111. doi: 10.1016/j.epsl.2020.116111
    [8]
    Norton D L, Dutrow B L. Complex behavior of magma-hydrothermal processes: Role of supercritical fluid[J]. Geochimica et Cosmochimica Acta, 2001, 65(21): 4009-4017. doi: 10.1016/S0016-7037(01)00728-1
    [9]
    池国祥, 薛春纪. 成矿流体动力学的原理、研究方法及应用[J]. 地学前缘, 2011, 18(5): 1-18. https://www.cnki.com.cn/Article/CJFDTOTAL-DXQY201105001.htm

    Chi G X, Xue C J. Principles, research methods and applications of metallogenic fluid dynamics[J]. Earth Science Frontiers, 2011, 18(5): 1-18(in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-DXQY201105001.htm
    [10]
    Liu L M, Wan C L, Zhao C B, et al. Geodynamic constraints on orebody localization in the Anqing orefield, China: Computational modeling and facilitating predictive exploration of deep deposits[J]. Ore Geology Reviews, 2011, 43(1): 249-263. doi: 10.1016/j.oregeorev.2011.09.005
    [11]
    Li X H, Yuan F, Zhang M M, et al. 3D computational simulation-based mineral prospectivity modeling for exploration for concealed Fe-Cu skarntype mineralization within the Yueshan orefield, Anqing district, Anhui Province, China[J]. Ore Geology Reviews, 2019, 105: 1-17. doi: 10.1016/j.oregeorev.2018.12.003
    [12]
    Zou Y H, Liu Y, Pan Y, et al. Numerical simulation of hydrothermal mineralization associated with simplified chemical reactions in Kaerqueka polymetallic deposit, Qinghai, China[J]. Transactions of Nonferrous Metals Society of China, 2019, 29(1): 165-177. doi: 10.1016/S1003-6326(18)64925-8
    [13]
    Maximilian K, Weis P, Andersen C. The role of incremental magma chamber growth on ore formation in porphyry copper systems[J]. Earth and Planetary Science Letters, 2020, 552: 116584. doi: 10.1016/j.epsl.2020.116584
    [14]
    Zhao C B, Lin G, Hobbs B E, et al. Finite element modelling of reactive fluids mixing and mineralization in pore-fluid saturated hydrothermal/sedimentary basins[J]. Engineering Computations, 2002, 19(3): 364-387. doi: 10.1108/02644400210423990
    [15]
    Ingebritsen S E, Geiger S, Hurwitz S, et al. Numerical simulation of magmatic hydrothermal systems[J]. Reviews of Geophysics, 2010, 48: 1-33. doi: 10.1029/2009RG000287
    [16]
    Baleanu D, Golmankhaneh A K, Nigmatullin R, et al. Fractional Newtonian mechanics[J]. Central European Journal of Physics, 2010, 8(1): 120-125.
    [17]
    Tresca H. Mémoire sur l'écoulement des corps solides[J]. Mémoires Présentés Par Divers Savants À l'Académieroyale des Sciences, 1868, 18: 733-799.
    [18]
    Mises R V. Mechanik der festen Körper im plastisch-deformablen Zustand[J]. Nachrichten von der Gesellschaft der Wissenschaften zu Göttingen, Mathematisch-Physikalische Klasse, 1913, 1: 582-592.
    [19]
    Ord A, Hobbs B E, Mühlhaus H B. Localization of deformation in rocks and metals[J]. Birkhäuser Verlag, Basel, 1992, 137(4): 337-366. http://ci.nii.ac.jp/ncid/BA27119813
    [20]
    Bates F S, Fredrickson G H. Block copolymer thermodynamics: Theory and experiment[J]. Annual Review of Physical Chemistry, 1990, 41(1): 525-557. doi: 10.1146/annurev.pc.41.100190.002521
    [21]
    Redlich O, Kwong J N. On the thermodynamics of solutions: An equation of state, fugacities of gaseous solutions[J]. Chemical Reviews, 1949, 44(1): 233-244. doi: 10.1021/cr60137a013
    [22]
    Panton R L. Incompressible flow[M]. Cambridge: John Wiley & Sons Inc., 1996.
    [23]
    Hughes T J R, Engel G, Mazzei L, et al. The continuous Galerkin method is locally conservative[J]. Journal of Computational Physics, 2000, 163(2): 467-488. doi: 10.1006/jcph.2000.6577
    [24]
    Bear J. Dynamics of fluids in porous media[M]. New York: American Elsevier Publishing Company, 1972.
    [25]
    王经. 传热学与流体力学基础[M]. 上海: 上海交通大学出版社, 2007.

    Wang J. Fundamentals of heat transfer and hydrodynamics[M]. Shanghai: Shanghai Jiaotong University Press, 2007(in Chinese).
    [26]
    张天孙, 卢改林. 传热学[M]. 北京: 中国电力出版社, 2006.

    Zhang T S, Lu G L. Heat transfer[M]. Beijing: China Electric Power Press, 2006(in Chinese).
    [27]
    Galdi G P. An introduction to the mathematical theory of the Navier-Stokes Equations[M]. New York: Springer, 2011.
    [28]
    COMSOL. COMSOL multiphysics: The platform for physics-based modeling and simulation[M]. Burlington: COMSOL Inc., 2013.
    [29]
    Whitaker S. Flow in porous media: I. A theoretical derivation of Darcy's law[J]. Transport in Porous Media, 1986, 1(1): 3-25. doi: 10.1007/BF01036523
    [30]
    Bird R B, Stewart W E, Lightfoot E B, et al. Transport phenomena[M]. New York: John Wiley & Sons Inc., 2002.
    [31]
    Wesselingh J A, Krishna R. Mass transfer in multicomponent mixtures[M]. Tallin: VSSD, 2000.
    [32]
    Heinrich C A, Walshe J L, Harrold B P. Chemical mass transfer modelling of ore-forming hydrothermal systems: Current practise and problems[J]. Ore Geology Reviews, 1996, 10(3/6): 319-338. http://www.onacademic.com/detail/journal_1000035005922810_4309.html
    [33]
    Liu Y, Dai T G. Numerical modeling of pore-fluid flow and heat transfer in the Fushan iron ore district, Hebei, China: Implications for hydrothermal mineralization[J]. Journal of Geochemical Exploration, 2014, 144: 115-127. doi: 10.1016/j.gexplo.2014.02.023
    [34]
    Zhang Y, Schaubs P M, Zhao C, et al. Fault-related dilation, permeability enhancement, fluid flow and mineral precipitation patterns: Numerical models[J]. Geological Society London Special Publications, 2008, 299(1): 239-255. doi: 10.1144/SP299.15
    [35]
    Zhao C B, Hobbs B E, Hornby P, et al. Numerical modelling of fluids mixing, heat transfer and non-equilibrium redox chemical reactions in fluid-saturated porous rocks[J]. International Journal for Numerical Methods in Engineering, 2005, 66(7): 1061-1078. doi: 10.1002/nme.1581/pdf
    [36]
    Zhao C B, Hobbs B E, Ord A. Theoretical and numerical investigation into roles of geofluid flow in ore forming systems: Integrated mass conservation and generic model approach[J]. Journal of Geochemical Exploration, 2010, 106(1/3): 251-260. http://www.sciencedirect.com/science/article/pii/S0375674209001241
    [37]
    Weis P. The dynamic interplay between saline fluid flow and rock permeability in magmatic-hydrothermal systems[J]. Geofluids, 2015, 15(1/2): 350-371. http://www.onacademic.com/detail/journal_1000039202745410_7c59.html
    [38]
    Yao Z S, James E. Mungall, flotation mechanism of sulphide melt on vapour bubbles in partially molten magmatic systems[J]. Earth and Planetary Science Letters, 2020, 542: 116298. doi: 10.1016/j.epsl.2020.116298
    [39]
    Ortoleva P J. Geochemical self-organization[M]. New York: Oxford University Press, 1994.
    [40]
    Steefel C, Lasaga C. A coupled model for transport of multiple chemical species and kinetic precipitation/dissolution reactions with application to reactive flow in single phase hydrothermal systems[J]. American Journal of Science, 1994, 294: 529-592. doi: 10.2475/ajs.294.5.529
    [41]
    何文武. 热液系统流体输运化学反应耦合动力学综述[J]. 地质科技情报, 1995, 14(2): 75-80. https://www.cnki.com.cn/Article/CJFDTOTAL-DZKQ502.013.htm

    He W W. Review on coupled kinetics of fluid transport and chemical reaction in hydrothermal system[J]. Geological Science and Technology Information, 1995, 14(2): 75-80(in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-DZKQ502.013.htm
    [42]
    Lasaga A C. Kinetic theory in the earth sciences[M]. Princeton: Princeton University Press, 2014.
    [43]
    谭凯旋, 谢焱石, 赵志忠, 等. 构造-流体-成矿体系的反应-输运-力学耦合模型和动力学模拟[J]. 地学前缘, 2001, 8(4): 311-321. https://www.cnki.com.cn/Article/CJFDTOTAL-DXQY200104015.htm

    Tan K X, Xie Y S, Zhao Z Z, et al. Reaction transport mechanics coupling model and dynamic simulation of tectonic fluid metallogenic system[J]. Earth Science Frontiers, 2001, 8(4): 311-321(in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-DXQY200104015.htm
    [44]
    Nardi A, Idiart A, Trinchero P, et al. Interface COMSOL-PHREEQC(iCP), an efficient numerical framework for the solution of coupled multiphysics and geochemistry[J]. Computers & Geosciences, 2014, 69: 10-21. http://www.sciencedirect.com/science/article/pii/S0098300414000880
    [45]
    Guo B L, Pu X K, Huang F H, et al. Fractional partial differential equations and their numerical solutions[M]. Beijing: Word Scientific Publishing Cooperation, 2015.
    [46]
    Hu X Y, Li X H, Yuan F, et al. Numerical simulation based targeting of the Magushan skarn Cu-Mo deposit, middle-lower Yangtze metallogenic belt, China[J]. Minerals, 2019, 9(10): 588-607. doi: 10.3390/min9100588
    [47]
    Ord A, Oliver N H S. Mechanical controls on fluid flow during regional metamorphism: Some numerical models[J]. Journal of Metamorphic Geology, 2010, 15(3): 345-359. http://www.onacademic.com/detail/journal_1000034680759310_e213.html
    [48]
    Zou Y H, Liu Y, Pan Y, et al. Numerical simulation of hydrothermal mineralization associated with simplified chemical reactions in Kaerqueka polymetallic deposit, Qinghai, China[J]. Transactions of Nonferrous Metals Society of China, 2019, 29(1): 165-177. doi: 10.1016/S1003-6326(18)64925-8
    [49]
    Zhang Y M, Qu W Z, Chen J Z. BEM analysis of thin structures for thermoelastic problems[J]. Engineering Analysis with Boundary Elements, 2013, 37(2): 441-452. doi: 10.1016/j.enganabound.2012.11.012
    [50]
    姚振汉, 王海涛. 边界元法[M]. 北京: 高等教育出版社, 2010.

    Yao Z H, Wang H T. Boundary element method[M]. Beijing: Higher Education Press, 2010(in Chinese).
    [51]
    高效伟, 彭海峰, 杨恺, 等. 高等边界元法: 理论与程序[M]. 北京: 科学出版社, 2015.

    Gao X W, Peng H F, Yang K, et al. Advanced boundary element method: Theory and procedure[M]. Beijing: Science Press, 2015(in Chinese).
    [52]
    Cook R D, Malkus D S, Plesha M E. Concepts and applications of finite element analysis[M]. New York: John Wiley & Sons Inc., 1974.
    [53]
    秦太验, 徐春晖, 周喆. 有限元法及其应用[M]. 北京: 中国农业大学出版社, 2011.

    Qin T Y, Xu C H, Zhou Z. Finite element method and its application[M]. Beijing: China Agricultural University Press, 2011(in Chinese).
    [54]
    冯康, 张建中, 张绮霞, 等. 数值计算方法[M]. 北京: 国防工业出版社, 1978.

    Feng K, Zhang J Z, Zhang Q X, et al. Numerical calculation method[M]. Beijing: National Defense Industry Press, 1978(in Chinese).
    [55]
    胡祖炽. 计算方法[M]. 北京: 高等教育出版社, 1959.

    Hu Z C. Calculation method[M]. Beijing: Higher Education Press, 1959(in Chinese).
    [56]
    Richtmyer R D. Difference methods for initial-value problems[M]. New York: Interscience Publishing Cooperation, 1957.
    [57]
    饶寿期. 有限元法和边界元法基础[M]. 北京: 北京航空学院出版社, 1990.

    Rao S Q. Foundation of finite element method and boundary element method[M]. Beijing: Beijing Institute of Aeronautics Press, 1990(in Chinese).
    [58]
    Arnold J, Jacoby W R, Schmeling H, et al. Continental collision and the dynamic and thermal evolution of the Variscan orogenic crustal root-numerical models[J]. Journal of Geodynamics, 2001, 31(3): 273-291. doi: 10.1016/S0264-3707(00)00023-5
    [59]
    Sorjonen-Ward P, Zhang Y H, Zhao C B. Numerical modelling of orogenic processes and gold mineralisation in the southeastern part of the Yilgarn Craton, Western Australia[J]. Australian Journal of Earth Sciences, 2015, 49(6): 935-964.
    [60]
    Schaubs P M, Zhao C B. Numerical models of gold-deposit formation in the Bendigo-Ballarat Zone, Victoria[J]. Australian Journal of Earth Sciences, 2002, 49(6): 1077-1096. doi: 10.1046/j.1440-0952.2002.00964.x
    [61]
    Zou Y H, Liu Y, Dai T G, et al. Finite difference modeling of metallogenic processes in the Hutouya Pb-Zn Deposit, Qinghai, China: Implications for hydrothermal mineralization[J]. Ore Geology Reviews, 2017, 91: 463-476. doi: 10.1016/j.oregeorev.2017.09.008
    [62]
    Zhu J, Li Z, Lin G, et al. Numerical simulation of mylonitization and structural controls on fluid flow and mineralization of the Hetai Gold Deposit, west Guangdong, China[J]. Geofluids, 2014, 14(2): 221-233. doi: 10.1111/gfl.12069
    [63]
    王语, 周永章, 肖凡, 等. 基于成矿条件数值模拟和支持向量机算法的深部成矿预测: 以粤北凡口铅锌矿为例[J]. 大地构造与成矿学, 2020, 44(2): 222-230. https://www.cnki.com.cn/Article/CJFDTOTAL-DGYK202002007.htm

    Wang Y, Zhou Y Z, Xiao F, et al. Numerical metallogenic modeling and support vector machine methods applied to predict deep mineralization: A case study from the Fankou Pb-Zn ore deposit in northern Guangdong[J]. Geotectonicaet Metallogenia, 2020, 44(2): 222-230(in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-DGYK202002007.htm
    [64]
    Lobatskaya R M, Strelchenko I P, Dolgikh E S. Finite-element 3D modeling of stress patterns around a dipping fault[J]. Geoscience Frontiers, 2018, 9(5): 1555-1563. doi: 10.1016/j.gsf.2017.09.010
    [65]
    汪新光, 张辉, 陈之贺, 等. 琼东南盆地陵水区中央峡谷水道沉积数值模拟[J]. 地质科技通报, 2021, 40(5): 42-53. doi: 10.19509/j.cnki.dzkq.2021.0026

    Wang X G, Zhang H, Chen Z H, et al. Numerical simulation of sedimentation of central canyon channel in Lingshui area, Qiongdongnan Basin[J]. Bulletin of Geological Science and Technology, 2021, 40(5): 42-53(in Chinese with English abstract). doi: 10.19509/j.cnki.dzkq.2021.0026
    [66]
    李萧, 吴礼明, 王丙贤, 等. 渝东南地区龙马溪组构造应力场数值模拟及裂缝有利区预测[J]. 地质科技通报, 2021, 40(6): 24-31. doi: 10.19509/j.cnki.dzkq.2021.0603

    Li X, Wu L M, Wang B X, et al. Numerical simulation of tectonic stress field and prediction of fracture target in the Longmaxi Formation in southeast Chongqing[J]. Bulletin of Geological Science and Technology, 2021, 40(6): 24-31(in Chinese with English abstract). doi: 10.19509/j.cnki.dzkq.2021.0603
    [67]
    廖秋林, 曾钱帮, 刘彤, 等. 基于ANSYS平台复杂地质体FLAC3D模型的自动生成[J]. 岩石力学与工程学报, 2005, 24(6): 1010-1013. doi: 10.3321/j.issn:1000-6915.2005.06.019

    Liao Q L, Zeng Q B, Liu T, et al. Automatic generation of FLAC3D model of complex geological body based on ANSYS platform[J]. Journal of Rock Mechanics and Engineering, 2005, 24(6): 1010-1013(in Chinese with English abstract). doi: 10.3321/j.issn:1000-6915.2005.06.019
    [68]
    Oliveira D, Arndt S, Cota R. Understanding mine behaviour through multi-scale modelling: A study of the Cuiaba mine, Brazil[C]//Anon. The ISRM Conference on Rock Mechanics for Natural Resources and Infrastructure: SBMR 2014. Lisbon Portugal: International Society for Rock Mechanics Press, 2014: 9-13.
    [69]
    Behyari M, Moghadam H H. Emplacement of silica veins at a brittle shear zone in the Ahar region, NW Iran: Insights from structural analysis, analogue and numerical modeling[J]. Journal of African Earth Sciences, 2018, 144: 90-103. doi: 10.1016/j.jafrearsci.2018.04.011
    [70]
    Poulet T, Karrech A, Regenauer-Lieb K, et al. Thermal-hydraulic-mechanical-chemical coupling with damage mechanics using ESCRIPT RT and ABAQUS[J]. Tectonophysics, 2012, 526/529: 124-132. doi: 10.1016/j.tecto.2011.12.005
    [71]
    Kurfess D, Heidbach O. CASQUS: A new simulation tool for coupled 3D finite element modeling of tectonic and surface processes based on ABAQUSTM and CASCADE[J]. Computers & Geosciences, 2009, 35(10): 1959-1967. http://www.researchgate.net/profile/Daniel_Kurfess/publication/222420540_CASQUS_A_new_simulation_tool_for_coupled_3D_finite_element_modeling_of_tectonic_and_surface_processes_based_on_ABAQUS_and_CASCADE/links/0deec53a88f56eaf6b000000
    [72]
    Conlin D, Gottardi R, Morra G, et al. Numerical modeling of fluid flow and heat transfers in fault systems[C/OL]//Anon. GSA South-Central Section Meeting. Colorado: The Geological Society of America Publications, 2016: 48-51.
    [73]
    Azad V, Li C, Verba C, et al. A COMSOL-GEMS interface for modeling coupled reactive-transport geochemical processes[J]. Computers & Geosciences, 2016, 92: 79-89. doi: 10.1016/j.cageo.2016.04.002
    [74]
    Wissmeier L, Barry D. Simulation tool for variably saturated flow with comprehensive geochemical reactions in two- and three-dimensional domains[J]. Environmental Modelling & Software, 2011, 26(2): 210-218. http://citeseerx.ist.psu.edu/viewdoc/download;jsessionid=AAC6743D1CE75297C8F40AE07585F5C7?doi=10.1.1.305.5715&rep=rep1&type=pdf
    [75]
    Butler S, Sinha G. Forward modeling of applied geophysics methods using Comsol and comparison with analytical and laboratory analog models[J]. Computers & Geosciences, 2012, 42: 168-176. http://homepage.usask.ca/~sab248/CAGEO_paper_2011.pdf
    [76]
    Fan X, Hu Z W, Xu S F, et al. Numerical simulation study on ore-forming factors of the Gejiu ore deposit, China[J]. Ore Geology Reviews, 2021, 135(11): 104209. http://www.sciencedirect.com/science/article/pii/S0169136821002353
    [77]
    陈金龙, 罗文行, 窦斌, 等. 涿鹿盆地三维多裂隙地质模型地温场数值模拟[J]. 地质科技通报, 2021, 40(3): 22-33. doi: 10.19509/j.cnki.dzkq.2021.0317

    Chen J L, Luo W X, Dou B, et al. Numerical simulation of geothermal field of three-dimensional multi fracture geological model in Zhuolu Basin[J]. Bulletin of Geological Science and Technology, 2021, 40(3): 22-33(in Chinese with English abstract). doi: 10.19509/j.cnki.dzkq.2021.0317
    [78]
    Weis P, Driesner T, Heinrich C A. Porphyry-copper ore shells form at stable pressure-temperature fronts within dynamic fluid plumes[J]. Science, 2012, 338: 1613-1616. doi: 10.1126/science.1225009
    [79]
    高志豪, 赵锐锐, 成建梅. 砂岩含水层CO2封存中考虑盐沉淀反馈作用的数值模拟: 以鄂尔多斯盆地为例[J]. 地质科技通报, 2022, 41(1): 269-277. doi: 10.19509/j.cnki.dzkq.2021.0073

    Gao Z H, Zhao R R, Cheng J M. Sandstone aquifer CO2 numerical simulation considering salt precipitation feedback in storage: taking Ordos Basin as an example[J]. Bulletin of Geological Science and Technology, 2022, 41(1): 269-277(in Chinese with English abstract). doi: 10.19509/j.cnki.dzkq.2021.0073
    [80]
    Arnold J, Jacoby W R, Schmeling H, et al. Continental collision and the dynamic and thermal evolution of the Variscan orogenic crustal root- numerical models[J]. Journal of Geodynamics, 2001, 31(3): 273-291. doi: 10.1016/S0264-3707(00)00023-5
    [81]
    谢建华, 夏斌, 徐振华, 等. 数值模拟软件FLAC及其在地学应用简介[J]. 地质与勘探, 2005, 41(2): 77-80. https://www.cnki.com.cn/Article/CJFDTOTAL-DZKT20050200F.htm

    Xie J H, Xia B, Xu Z H, et al. Numerical simulation software FLAC and its application in geosciences[J]. Geology and Exploration, 2005, 41(2): 77-80(in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-DZKT20050200F.htm
    [82]
    Luo Z Q, Wu Y B, Liu X M, et al. FLAC3D modeling for complex geologic body based on SURPAC[J]. Rock and Soil Mechanics, 2008, 29(5): 1334-1338. doi: 10.3969/j.issn.1000-7598.2008.05.036
    [83]
    李黎明. ANSYS有限元分析实用教程[M]. 北京: 清华大学出版社, 2005.

    Li L M. ANSYS finite element analysis practical course[M]. Beijing: Tsinghua University Press, 2005(in Chinese).
    [84]
    石亦平, 周玉蓉. ABAQUS有限元分析实例详解[M]. 北京: 机械工业出版社, 2006.

    Shi Y P, Zhou Y R. ABAQUS finite element analysis example details[M]. Beijing: China Machine Press, 2006(in Chinese).
    [85]
    Candela P A, Holland H D. A mass transfer model for copper and molybdenum in magmatic hydrothermal system: The origin of porphyry-type ore deposits[J]. Economic Geology, 1986, 87(1): 1-19. http://www.onacademic.com/detail/journal_1000037233355310_ef83.html
    [86]
    Zhang Y H, Roberts P, Murphy B. Understanding regional structural controls on mineralization at the century deposit: A numerical modelling approach[J]. Journal of Geochemical Exploration, 2010, 106(1/3): 244-250. http://www.onacademic.com/detail/journal_1000035389280010_13b6.html
    [87]
    Zhang Y, Schaubs P M, Zhao C, et al. Fault-related dilation, permeability enhancement, fluid flow and mineral precipitation patterns: Numerical models[J]. Geological Society London Special Publications, 2008, 299(1): 239-255. doi: 10.1144/SP299.15
    [88]
    Afanasyev A A, Melnik O E. Numerical simulation of formation of a concentrated brine lens subject to magma chamber degassing[J]. Fluid Dynamics, 2017, 52: 416-423. doi: 10.1134/S0015462817030103
    [89]
    Afanasyev A A, Blundy J, Melnik O, et al. Formation of magmatic brine lenses via focussed fluid-flow beneath volcanoes[J]. Earth & Planetary Science Letters, 2018, 486: 119-128. http://www.nstl.gov.cn/paper_detail.html?id=f493f04dcc7f78e70368a0ee61d3cfa0
    [90]
    Alejandro R, Weis P, Magnall J M, et al. Hydrodynamic constraints on ore formation by basin-scale fluid flow at continental margins: Modelling Zn metallogenesis in the Devonian Selwyn Basin[J]. Geochemistry, Geophysics, Geosystems, 2021, 22(6): e2020GC009453. http://www.researchgate.net/publication/352158763_Hydrodynamic_constraints_on_ore_formation_by_basin-scale_fluid_flow_at_continental_margins_Modelling_Zn_metallogenesis_in_the_Devonian_Selwyn_Basin
    [91]
    Zhao C B, Hobbs B E, Ord A. Convective and advective heat transfer in geological systems[M]. Berlin, Heidelberg: Springer, 2008.
    [92]
    Chelle-Michou C, Rottier B, Caricchi L, et al. Tempo of magma degassing and the genesis of porphyry copper deposits[J]. Scientific Reports, 2017, 7: 40566. doi: 10.1038/srep40566
    [93]
    Korges M, Weis P, Anderson C. The role of incremental magma chamber growth on ore formation in porphyry copper systems[J]. Earth and Planetary Science Letters, 2020, 552: 116584. doi: 10.1016/j.epsl.2020.116584
    [94]
    Liu Y, Dai T G, Qiu L, et al. Three-dimensional numerical simulation of ore-forming processes of the Fushan skarn iron deposit in Handan-Xingtai ore cluster, North China: Implication for tectonic effects on skarn-iron mineralization[J]. Journal of Geochemical Exploration, 2016, 169: 144-156. doi: 10.1016/j.gexplo.2016.07.022
    [95]
    肖凡, 王恺其. 德兴斑岩铜矿床断裂与侵入体产状对成矿的控制作用: 从力-热-流三场耦合数值模拟结果分析[J]. 地学前缘, 2021, 28(3): 190-207. https://www.cnki.com.cn/Article/CJFDTOTAL-DXQY202103021.htm

    Xiao F, Wang K Q. Faults and intrusion occurrence control on copper mineralization in Dexing porphyry copper deposit in Jiangxi, China: A perspective from stress deformation-heat transfer-fluid flow coupled numerical modeling[J]. Earth Science Frontiers, 2021, 28(3): 190-207(in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-DXQY202103021.htm
    [96]
    贾蔡, 袁峰, 李晓晖, 等. 基于多源数据约束的成矿动力学模拟: 以宁芜盆地钟姑矿田典型矿床为例[J]. 地质科学, 2018, 53(4): 1327-1346.

    Jia C, Yuan F, Li X H, et al. Metallogenic dynamics simulation based on multi-source data constraints: Taking the typical deposit of Zhonggu Orefield in Ningwu Basin as an example[J]. Chinese Journal of Geology, 2018, 53(4): 1327-1346(in Chinese with English abstract).
    [97]
    戴文强, 李晓晖, 袁峰, 等. 安庆铜矿床典型矽卡岩矿物形成过程数值模拟[J]. 合肥工业大学学报: 自然科学版, 2019, 42(3): 346-354. https://www.cnki.com.cn/Article/CJFDTOTAL-HEFE201903008.htm

    Dai W Q, Li X H, Yuan F, et al. Numerical simulation of mineral formation process of typical skarn in Anqing Copper Deposit[J]. Journal of Hefei University of Technology: Natural Science Edition, 2019, 42(3): 346-354(in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-HEFE201903008.htm
    [98]
    Liu L M, Zhao Y, Sun T. 3D computational shape and cooling process-modeling of magmatic intrusion and its implication for genesis and exploration of intrusion related ore deposits: An example from the Yueshan intrusion in Anqing[J]. Tectonophysics, 2012, 526(2): 110-123. http://www.sciencedirect.com/science/article/pii/S0040195111003702
    [99]
    Murphy F C, Ord A, Hobbs B E, et al. Targeting stratiform Zn-Pb-Ag massive sulfide deposits in Ireland through numerical modeling of coupled deformation, thermal transport, and fluid flow[J]. Economic Geology, 2008, 103(7): 1437-1458. doi: 10.2113/gsecongeo.103.7.1437
    [100]
    Feltrin L, Mclellan J G, Oliver N. Modelling the giant, Zn-Pb-Ag Century Deposit, Queensland, Australia[J]. Computers & Geosciences, 2009, 35(1): 108-133. doi: 10.3969/j.issn.1001-3695.2009.01.034
    [101]
    Xie J, Cui Y A, Fanidi M, et al. Numerical modeling of marine self-potential from a seafloor hydrothermal ore deposit[J]. Pure and Applied Geophysics, 2021, 178: 1731-1744. doi: 10.1007/s00024-021-02720-3
    [102]
    Liu L M, Cao W, Liu H, et al. Applying benefits and avoiding pitfalls of 3D computational modeling-based machine learning prediction for exploration targeting: Lessons from two mines in the Tongling-Anqing district, eastern China[J/OL]. Ore Geology Review. https://doi.org/10.1016/j.oregeorev.2022.104712
    [103]
    Hu X Y, Chen Y H, Liu G X, et al. Numerical modeling of formation of the Maoping Pb-Zn Deposit within the Sichuan-Yunnan-Guizhou Metallogenic Province, southwestern China: Implications for the spatial distribution of concealed Pb mineralization and its controlling factors[J]. Ore Geology Reviews, 2022, 140: 104573. doi: 10.1016/j.oregeorev.2021.104573
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article Views(474) PDF Downloads(443) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return