Volume 42 Issue 1
Jan.  2023
Turn off MathJax
Article Contents
Jing Yuqian, Lei Chuang, Liu Kedong, Li Zhenhua. Deposition environment and provenance of the Palaeogene Shahejie Formation in Nanpu Sag: Evidences from trace and rare earth element geochemistry[J]. Bulletin of Geological Science and Technology, 2023, 42(1): 350-359. doi: 10.19509/j.cnki.dzkq.2022.0131
Citation: Jing Yuqian, Lei Chuang, Liu Kedong, Li Zhenhua. Deposition environment and provenance of the Palaeogene Shahejie Formation in Nanpu Sag: Evidences from trace and rare earth element geochemistry[J]. Bulletin of Geological Science and Technology, 2023, 42(1): 350-359. doi: 10.19509/j.cnki.dzkq.2022.0131

Deposition environment and provenance of the Palaeogene Shahejie Formation in Nanpu Sag: Evidences from trace and rare earth element geochemistry

doi: 10.19509/j.cnki.dzkq.2022.0131
  • Received Date: 28 Jun 2021
  • In order to reveal the formation mechanism of the organic-rich shales of the Shahejie Formation in Nanpu Sag, the depositional environment and provenance were investigated in detail through analyzing trace and rare earth elements(REE) geochemical characteristics. The results show that the trace elements Li, Cs and Bi are enriched, Cr and Sn are relatively depleted, and other trace elements are close to those in the upper continental crust(UCC).The total amount of REE vary widely, which is close to or higher than the average value in the UCC, and the supply of terrestrial source debris is adequate. The REE allocation pattern shows light rare earth element(LREE) enrichment with a high degree of divergence, and a relative deficit of heavy rare earth element(HREE) with a low degree of divergence. Eu negative anomaly is obvious, Ce is basically normal. The variations of Sr abundance and Sr/Ba ratio reflect that, in Nanpu Sag, the lake water was separated to a certain extent, and the fresh water, brackish water and saline water coexisted during sedimentary period of the third member of Shahejie Formation(Es3), and during these dimentary period of the first member of Shahejie Formation(Es1), the connectivity of lake water was enhanced, which was dominated by brackish water.The values of the V/(V+Ni), Th/U, δCe, and Ceanom comprehensively delineate the water body presented suboxic environment with moderate stratification. Respectively, the source Ba content indicated the water body was dominated by high paleoproductivity. The REE assemblage characteristics suggests that the provenance of Shahejie Formation were primarily derived from Yanshanian granites developed in Yanshanian fold belt and a small amount of sedimentary rocks. The development of organic-rich shales in the Shahejie Formation in Nanpu Sag is closely related to paleoenvironment and paleogeography, which can be summarized as the followings: ①suitable paleosalinity as well as sufficient nutrients at water body contributed to the booming of various planktonic algae, improving the production efficiency of the aquatic organic matter; ②suboxic water column slowed down the degradation of oxygen-sensitive material during the burial process, enhancing the preservation efficiency of sedimentary organic matter.

     

  • loading
  • [1]
    Alias F L, Abdullah W H, Hakimi M H, et al. Organic geochemical characteristics and depositional environment of the Tertiary Tanjong Formation-coals in the Pinangah area, onshore Sabah, Malaysia[J]. International Journal of Coal Geology, 2012, 104: 9-21. doi: 10.1016/j.coal.2012.09.005
    [2]
    Hao F, Zhou X H, Zhu Y M, et al. Lacustrine source rock deposition in response to co-evolution of environments and organisms controlled by tectonic subsidence and climate, Bohai Bay Basin, China[J]. Organic Geochemistry, 2011, 42(4): 323-339. doi: 10.1016/j.orggeochem.2011.01.010
    [3]
    李浩, 陆建林, 李瑞磊, 等. 长岭断陷下白垩统湖相烃源岩形成古环境及主控因素[J]. 地球科学, 2017, 42(10): 1774-1786. https://www.cnki.com.cn/Article/CJFDTOTAL-DQKX201710012.htm

    Li H, Lu J L, Li R L, et al. Generationpaleoenvironment and its controlling factors of lower cretaceous lacustrine hydrocarbon source rocks in Changling Depression, south Songliao Basin[J]. Earth Science, 2017, 42(10): 1774-1786 (in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-DQKX201710012.htm
    [4]
    夏刘文, 曹剑, 徐田武, 等. 盐湖生物发育特征及其烃源意义[J]. 地质评论, 2017, 63(6): 1149-1562. https://www.cnki.com.cn/Article/CJFDTOTAL-DZLP201706011.htm

    Xia L W, Cao J, Xu T W, et al. Development characteristics of biologies in saline lake environments and their implications for hydrocarbon source[J]. Ceological Review, 2017, 63(6): 1149-1562 (in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-DZLP201706011.htm
    [5]
    袁静, 肖运凤, 董道涛, 等. 高邮凹陷深凹带戴南组古生物特征及环境意义[J]. 西南石油大学学报: 自然科学版, 2018, 40(1): 11-21. https://www.cnki.com.cn/Article/CJFDTOTAL-XNSY201801002.htm

    Yuan J, Xiao Y F, Dong D T, et al. Paleontological features and sedimentary environment of Dainan Formation in deep sag of Gaoyou Sag[J]. Journal of Southwest Petroleum University : Science & Technology Edition, 2018, 40(1): 11-21 (in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-XNSY201801002.htm
    [6]
    刘士磊, 王启飞, 龚莹杰, 等. 渤海海域古近纪微体化石组合特征及油气勘探意义[J]. 地层学杂志, 2012, 36(4): 700-709. https://www.cnki.com.cn/Article/CJFDTOTAL-DCXZ201204004.htm

    Liu S L, Wang Q F, Gong Y J, et al. Paleogene microfossil assemblages from the Bohai area and their importance for the oil and gas exploration[J]. Journal of Stratigraphy, 2012, 36(4): 700-709 (in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-DCXZ201204004.htm
    [7]
    Adegoke A K, Adegoke W H, Hakimi M H, et al. Geochemical characterisation and organic matter enrichment of Upper Cretaceous Gongila shales from Chad (Bornu) Basin, northeastern Nigeria: Bioproductivity versus anoxia conditions[J]. Journal of Petroleum Science and Engineering, 2015, 135: 73-87. doi: 10.1016/j.petrol.2015.08.012
    [8]
    张明亮, 郭伟, 沈俊, 等. 古海洋氧化还原地球化学指标研究新进展[J]. 地质科技情报, 2017, 36(4): 95-106.

    Zhang M L, Guo W, Shen J, et al. New progress on geochemical indicators of ancient oceanic redox condition[J]. Geological Science and Technology Information, 2017, 36(4): 95-106 (in Chinese with English abstract).
    [9]
    Cao J, Wu M, Chen Y, et al. Trace and rare earth element geochemistry of Jurassic mudstones in the northern Qaidam Basin, northwest China[J]. Chemie der Erde, 2012, 72(3): 245-252. doi: 10.1016/j.chemer.2011.12.002
    [10]
    Moosavirad S M, Janardhana M R, Sethumadhav M S, et al. Geochemistry of lower Jurassic shales of the Shemshak Formation, Kerman Province, CentralIran: Provenance, source weathering and tectonic setting[J]. Chemie dre Erde, 2011, 71(3): 279-288. doi: 10.1016/j.chemer.2010.10.001
    [11]
    朱志军, 陈洪德, 林良彪, 等. 川东南-湘西地区志留系小河坝组砂岩微量元素地球化学特征及意义[J]. 地质科技情报, 2010, 29(2): 24-30. doi: 10.3969/j.issn.1000-7849.2010.02.005

    Zhu Z J, Chen H D, Lin L B, et al. Signification andcharacteristic of the trace element ratios of the sandstone in Silurian Xiaoheba Formation in southeastern Sichuan Province and western Hunan Province[J]. Geological Science and Technology Information, 2010, 29(2): 24-30 (in Chinese with English abstract). doi: 10.3969/j.issn.1000-7849.2010.02.005
    [12]
    腾格尔, 刘文汇, 徐永昌, 等. 无机地球化学参数与有效烃源岩发育环境的相关研究[J]. 地球科学进展, 2005, 20(2): 193-200. https://www.cnki.com.cn/Article/CJFDTOTAL-DXJZ200502008.htm

    Teng G R, Liu W H, Xu W C, et al. Correlative study on parameters of inorganic geochemistry and hydrocarbon source rocks formative environment[J]. Advances In Earth Science, 2005, 20(2): 193-200 (in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-DXJZ200502008.htm
    [13]
    叶加仁, 赵牛斌, 杨宝林, 等. 涠西南凹陷流沙港组烃源岩生产力及发育模式[J]. 地质科技通报, 2020, 39(1): 105-113. doi: 10.19509/j.cnki.dzkq.2020.0112

    Ye J R, Zhao N B, Yang B L, et al. Productivity and development model of source rock of the Liushagang Formation in the Weixinan Sag[J]. Bulletin of Geological Science and Technology, 2020, 39(1): 105-113 (in Chinese with English abstract). doi: 10.19509/j.cnki.dzkq.2020.0112
    [14]
    张春宇, 管树巍, 吴林, 等. 塔西北地区下寒武统碳酸盐岩地球化学特征及其古环境意义: 以舒探1井为例[J]. 地质科技通报, 2021, 40(5): 99-111. doi: 10.19509/j.cnki.dzkq.2021.0508

    Zhang C Y, Guan S W, Wu L, et al. Geochemical characteristics and its paleo-environmental significance of the Lower Cambrian carbonate in the northwestern Tarim Basin: A case study of Well Shutan-1[J]. Bulletin of Geological Science and Technology, 2021, 40(5): 99-111 (in Chinese with English abstract). doi: 10.19509/j.cnki.dzkq.2021.0508
    [15]
    Wang E Z, Wang Z J, Pang X Q, et al. Key factors controlling hydrocarbon enrichment in a deep petroleum system in a terrestrial rift basin—A case study of the uppermost member of the upper Paleogene Shahejie Formation, Nanpu Sag, Bohai Bay Basin, NE China[J]. Marine and Petroleum Geology, 2019, 107: 572-590. doi: 10.1016/j.marpetgeo.2019.05.027
    [16]
    范泓澈, 黄志龙, 庞雄奇, 等. 南堡凹陷古近系深层烃源岩分布特征及厚度预测[J]. 油气地质与采收率, 2011, 18(2): 21-25. https://www.cnki.com.cn/Article/CJFDTOTAL-YQCS201102006.htm

    Fan H Z, Huang Z L, Pang X Q, et al. Evaluation approach and early-stage prediction on Paleogene hydrocarbon source rocks in Nanpu sag, Bohai BayBasin[J]. Petroleum Geology and Recovery Efficiency, 2011, 18(2): 21-25 (in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-YQCS201102006.htm
    [17]
    曾棒, 刘小平, 刘国勇, 等. 陆相泥页岩层系岩相测井识别与预测: 以南堡凹陷拾场次洼为例[J]. 地质科技通报, 2021, 40(1): 69-79. doi: 10.19509/j.cnki.dzkq.2021.0103

    Zeng B, Liu X P, Liu G Y, et al. Logging identification and prediction of lithofacies of lacustrine shale system in Shichang Sub-Sag, Nanpu Depression[J]. Bulletin of Geological Science and Technology, 2021, 40(1): 69-79 (in Chinese with English abstract). doi: 10.19509/j.cnki.dzkq.2021.0103
    [18]
    李素梅, 庞雄奇, 万中华. 南堡凹陷混源油分布与主力烃源岩识别[J]. 地球科学: 中国地质大学学报, 2011, 36(6): 1064-1072. https://www.cnki.com.cn/Article/CJFDTOTAL-DQKX201106012.htm

    Li S M, Pang X Q, Wan Z H. Mixedoil distribution and source rock discrimination of the Nanpu Depression, Bohaibay Basin[J]. Earth Science : Journal of China University of Geosciences, 2011, 36(6): 1064-1072 (in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-DQKX201106012.htm
    [19]
    Taylor S R, Mclennan S M. The continental crust: Its composition and evolution[J]. The Journal of Geology, 1985, 94(4): 57-72.
    [20]
    肖龙, 欧阳成甫, 汪劲草. 冀东青龙太古宙花岗岩系地质地球化学特征[J]. 桂林冶金地质学院学报, 1994, 14(4): 380-386. https://www.cnki.com.cn/Article/CJFDTOTAL-GLGX404.005.htm

    Xiao L, Ouyang C P, Wang J C. The geology and geochemistry of the Archean granitoids in Qinglong, east Hebei[J]. Journal of Guilin College of Geology, 1994, 14(4): 380-386 (in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-GLGX404.005.htm
    [21]
    檀国平. 燕山地区含金花岗岩岩石地球化学特征[J]. 沈阳黄金学院学报, 1997, 16(1): 24-29. https://www.cnki.com.cn/Article/CJFDTOTAL-HUJI199701003.htm

    Tan G P. Geochemical features of granites related with gold deposits in Yanshan Region[J]. Journal of Shenyang Institute of Gold Technology, 1997, 16(1): 24-29 (in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-HUJI199701003.htm
    [22]
    李晓勇. 燕山地区中生代火山作用成因及其对深部过程的制约[D]. 广州: 中国科学院广州地球化学研究所, 2003.

    Li X Y. Mesozoic volcanism and constraint on deep geological process in Yanshan Area[D]. Guangzhou: Guangzhou Institute of Geochemistry, Chinese Academy of Science, 2003 (in Chinese with English abstract).
    [23]
    李伍平. 燕山造山带中生代火山岩地球化学特征及其地球动力学背景[D]. 广州: 中国科学院广州地球化学研究所, 2002.

    Li W P. Geochemical characteristics and geodynamic background of Mesozoic volcanic rocks in Yanshan orogenic belt[D]. Guangzhou: Guangzhou Institute of Geochemistry, Chinese Academy of Science, 2002 (in Chinese with English abstract).
    [24]
    李珍, 焦养泉, 刘春华, 等. 黄骅坳陷高柳地区重矿物物源分析[J]. 石油勘探与开发, 1998, 25(6): 5-7. https://www.cnki.com.cn/Article/CJFDTOTAL-SKYK806.001.htm

    Li Z, Jiao Y Q, Liu C H, et al. Source analysis of heavy minerals in Gaoliu area, Huanghua Depression[J]. Petroleum Exploration and Development, 1998, 25(6): 5-7(in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-SKYK806.001.htm
    [25]
    Boynton W V. Cosmochemistry of the rare earth elements: meteorite studies[J]. Developments in Geochemistry, 1984, 2: 63-114.
    [26]
    崔滔, 焦养泉, 杜远生, 等. 黔北务正道地区铝土矿形成环境的古盐度识别[J]. 地质科技情报, 2013, 32(1): 46-51. https://www.cnki.com.cn/Article/CJFDTOTAL-DZKQ201301012.htm

    Cui T, Jiao Y Q, Du Y S, et al. Analysis on paleosalinity of sedimentary environment of bauxite in Wuchuan-Zheng'an-Daozhen area, northern Guizhou Province[J]. Geological Science and Technology Information, 2013, 32(1): 46-51 (in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-DZKQ201301012.htm
    [27]
    夏雪飞, 张宁, 喻建新, 等. 渤海湾盆地南堡凹陷始新世—渐新世孢粉、藻类与地层对比[J]. 微体古生物学报, 2015, 32(3): 269-284. https://www.cnki.com.cn/Article/CJFDTOTAL-WSGT201503005.htm

    Xia F X, Zhang N, Yu J X, et al. Eocene-oligocene palynology and biostratigraphic correlation in the Nanpu Sag, Bohai bay basin, China[J]. Acta Micropalaeontologica Sinica, 2015, 32(3): 269-284 (in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-WSGT201503005.htm
    [28]
    刘传联, 徐金鲤. 生油古湖泊生产力的估算方法及应用实例[J]. 沉积学报, 2002, 20(1): 144-150. https://www.cnki.com.cn/Article/CJFDTOTAL-CJXB200201023.htm

    Liu C L, Xu J L. Estimation method on productivity of oil-producing lake and a case study[J]. Acta Sedimentologica Sinica, 2002, 20(1): 144-150(in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-CJXB200201023.htm
    [29]
    徐博, 曾文倩, 刁慧, 等. 东海盆地西湖凹陷平湖组微量稀土元素对古生产环境的指示意义[J]. 海洋地质与第四纪地质, 2020, 41(3): 72-84. https://www.cnki.com.cn/Article/CJFDTOTAL-HYDZ202103008.htm

    Xu B, Zeng W Q, Diao H, et al. Trace rare earth element in the Pinghu Formation of Xihu Sag and its implications for paleo-production environment[J]. Marine Geology & Quaternary Geology, 2020, 41(3): 72-84 (in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-HYDZ202103008.htm
    [30]
    Guo Y C, Pang X Q, Dong Y X, et al. Hydrocarbon generation and migration in the Nanpu Sag, Bohai Bay Basin, eastern China: Insight from basin and petroleum system modeling[J]. Journal of Asian Earth Sciences, 2013, 77: 140-150.
    [31]
    Hatch J R, Leventhal J S. Relationship between inferred redox potential of the depositional environmental and geochemistry of the upper Pennsylvanian (Missourian) Stark Shale Member of the Dennis Limestope, Wabaunsee County, Kansas, USA[J]. Chemical Geology, 1992, 99: 65-82.
    [32]
    Jones B, Manning D A C. Comparison of geochemical indices used for the interpretation of palaeoredox conditions in ancient mudstones[J]. Chemical Geology, 1994, 111(1/4): 111-129.
    [33]
    Shields G, Stille P. Diagenetic constrains on the use of cerium anomalies as paleoseawater redox proxies: An isotopic and REE study of Cambrian phosphofites[J]. Chemical Geology, 2001, 175(1/2): 29-48.
    [34]
    Elderfield H, Greaves M J. The rare earth elements in seawater[J]. Nature, 1982, 296: 214-219.
    [35]
    董月霞, 张宁, 周海民, 等. 南堡凹陷油田古近系碎屑重矿物的物源和构造意义[J]. 地质科技情报, 2008, 27(5): 7-12. https://www.cnki.com.cn/Article/CJFDTOTAL-DZKQ200805003.htm

    Dong Y X, Zhang N, Zhou H N, et al. Provenances and tectonic implications paleogene terrigenous heavy minerals in Nanpu Rifted Trough, eastern Hebei Province[J]. Geological Science and Technology Information, 2008, 27(5): 7-12 (in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-DZKQ200805003.htm
    [36]
    Harris N B, Freeman K H, Pancost R D, et al. The character and origin of lacustrine source rocks in the Lower Cretaceous synrift section, Congo Basin, west Africa[J]. AAPG Bulletin, 2004, 88(8): 1163-1184.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article Views(407) PDF Downloads(66) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return