Volume 41 Issue 6
Nov.  2022
Turn off MathJax
Article Contents
Lei Jin, Cui Shenghua, Pei Xiangjun, Yang Hailong, Zhu Ling, Yang Qingwen. Stress amplification of the landslide slip zone during vertical P-wave incidence based on ray theory[J]. Bulletin of Geological Science and Technology, 2022, 41(6): 149-161. doi: 10.19509/j.cnki.dzkq.2022.0150
Citation: Lei Jin, Cui Shenghua, Pei Xiangjun, Yang Hailong, Zhu Ling, Yang Qingwen. Stress amplification of the landslide slip zone during vertical P-wave incidence based on ray theory[J]. Bulletin of Geological Science and Technology, 2022, 41(6): 149-161. doi: 10.19509/j.cnki.dzkq.2022.0150

Stress amplification of the landslide slip zone during vertical P-wave incidence based on ray theory

doi: 10.19509/j.cnki.dzkq.2022.0150
  • Received Date: 27 Oct 2021
  • The largest landslide triggered by the Wenchuan earthquake was the Daguangbao landslide, which formed in the preinterlayer structural dislocation zone (weak layer) in the slope. The weak layer suffered strong historical structural fragmentation and produced a large area of new fractures during the earthquake. The causes of weak layer fragmentation and its control effect on the initiation of the Daguangbao landslide have always been the research focus. In this paper, by taking the Daguangbao landslide as the geological prototype, the interlayer dislocation zone was generalized into a geological body model with a weak layer unit. Based on seismic wave ray theory, a dynamic response theoretical model of the vertical P-wave incidence process considering the wave field conversion and time delay at the top and bottom interface of the weak layer was established, and the dynamic stress amplification characteristics of the weak layer are found theoretically. Furthermore, through a shaking table physical model test, the influence law of seismic intensity and frequency on the stress amplification of the weak layer were revealed. Based on the theory and experimental structure, it was proposed that the amplitude attenuation was caused by the wave field conversion and energy distribution of the vibration wave at the top and bottom interface of the weak layer, and the time delay was caused by the difference in the medium properties between the weak layer and the upper and lower hard layers. Both of them lead to stress differentiation and superposition, which was the internal mechanism of stress amplification in the weak layer. Therefore, it was considered that the stress amplification of the preinterlayer structural dislocation zone of the Daguangbao landslide in the process of a strong earthquake led to the fragmentation of the rock mass in the zone, reduced the shear strength of the rock mass in the slip zone, and promoted the rapid start-up of the landslide in the process of a strong earthquake.

     

  • loading
  • [1]
    闫彦, 刘志辉, 叶朝霞. 新疆北疆地区融雪洪水灾害预警模型的建立与验证[J]. 干旱区地理, 2009, 32(4): 552-557. https://www.cnki.com.cn/Article/CJFDTOTAL-GHDL200904011.htm

    Yan Y, Liu Z H, Ye Z X. Establishment and validation of early warning model of snowmelt flood disaster in northern Xinjiang[J]. Arid Land Geography, 2009, 32(4): 552-557(in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-GHDL200904011.htm
    [2]
    黄河清, 赵其华. 汶川地震诱发文家沟巨型滑坡-碎屑流基本特征及成因机制初步分析[J]. 工程地质学报, 2010, 18(2): 168-177. https://www.cnki.com.cn/Article/CJFDTOTAL-GCDZ201002003.htm

    Huang H Q, Zhao Q H. Basic characteristics and genetic mechanism analysis of Wenjiagou giant landslide induced by Wenchuan earthquake[J]. Journal of Engineering Geology, 2010, 18(2): 168-177(in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-GCDZ201002003.htm
    [3]
    Chigira M. Long-term gravitational deformation of rocks by mass rock creep[J]. Engineering Geology, 1992, 32(3): 157-184. doi: 10.1016/0013-7952(92)90043-X
    [4]
    谢卓娟, 李山有, 吕悦军. 滇西南地区主要活动断裂的b值空间分布特征[J]. 地球科学: 中国地质大学学报, 2015, 40(10): 1755-1766. https://www.cnki.com.cn/Article/CJFDTOTAL-DQKX201510016.htm

    Xie Z J, Li S Y, Lü Y J. Spatial distribution characteristics of b-value of main active faults in Southwest Yunnan[J]. Earth Science: Journal of China University of Geosciences, 2015, 40(10): 1755-1766(in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-DQKX201510016.htm
    [5]
    黄润秋, 唐川, 李勇, 等. 汶川地震地质灾害研究[M]. 北京: 科学出版社, 2009.

    Huang R Q, Tang C, Li Y, et al. Study on geological hazards of Wenchuan earthquake[M]. Beijing: Science Press, 2009(in Chinese).
    [6]
    李远征, 陈强, 潘远阳, 等. 西南某电站坝址右岸含软弱层带岩质斜坡变形破坏机制[J]. 中国地质灾害与防治学报, 2020, 31(4): 1-10. https://www.cnki.com.cn/Article/CJFDTOTAL-ZGDH202004001.htm

    Li Y Z, Chen Q, Pan Y Y, et al. Deformation and failure mechanism of rock slope with weak layer zone on the right bank of a hydropower station dam site in Southwest China[J]. Chinese Journal of Geological Hazards and Control, 2020, 31(4): 1-10(in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-ZGDH202004001.htm
    [7]
    杨龙, 史小勇, 陈钱, 等. 循环荷载作用下片麻岩劣化损伤机理与规律试验[J]. 地质科技通报, 2020, 39(5): 55-60. doi: 10.19509/j.cnki.dzkq.2020.0517

    Yang L, Shi X Y, Chen Q, et al. Test on deterioration damage mechanism and law of gneiss under cyclic load[J]. Bulletin of Geological Science and Technology, 2020, 39(5): 55-60(in Chinese with English abstract). doi: 10.19509/j.cnki.dzkq.2020.0517
    [8]
    Qi S W, Xu Q A, Lan H X, et al. Resonance effect existence or not for landslides triggered by 2008 Wenchuan earthquake: A reply to the comment by Drs. Xu Chong and Xu Xiwei[J]. Engineering Geology, 2012, 151: 128-130. doi: 10.1016/j.enggeo.2012.08.003
    [9]
    范留明, 李宁. 软弱夹层的透射模型及其隔震特性研究[J]. 岩石力学与工程学报, 2005, 24(14): 2456-2462. doi: 10.3321/j.issn:1000-6915.2005.14.009

    Fan L M, Li N. Transmission model and seismic isolation of weak interlayers[J]. Chinese Journal of Rock Mechanics and Engineering, 2005, 24(14): 2456-2462(in Chinese with English abstract). doi: 10.3321/j.issn:1000-6915.2005.14.009
    [10]
    徐红玉, 陈殿云, 杨先健, 等. 弹性介质中平面SH波通过弹性夹层时的传播特性[J]. 岩石力学与工程学报, 2003, 22(2): 304-308. https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX200302030.htm

    Xu H Y, Chen D Y, Yang X J, et al. Propagation of planar SH waves passing through elastic interlining in elastic medium[J]. Chinese Journal of Rock Mechanics and Engineering, 2003, 22(2): 304-308(in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX200302030.htm
    [11]
    陈镕, 陈竹昌, 薛松涛, 等. 夹有软弱土层的层状场地对入射SH波的响应分析[J]. 岩石力学与工程学报, 1999, 18(2): 43-47. https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX902.009.htm

    Chen R, Chen Z C, Xue S T, et al. The response analysis of strata with extremely soft soil layer to incident SH waves[J]. Chinese Journal of Rock Mechanics and Engineering, 1999, 18(2): 43-47(in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX902.009.htm
    [12]
    Groby J P, Wirgin A. Two dimensional ground motion at a soft viscoelastic layer/hard substratum site in response to SH cylindrical seismic waves radiated by deep and shallow line source: Ⅰ. Theory[J]. Geophysical Journal International, 2005, 163: 165-191.
    [13]
    Groby J P, Wirgin A. Two dimensional ground motion at a soft viscoelastic layer/hard substratum site in response to SH cylindrical seismic waves radiated by deep and shallow line source: Ⅱ. Numerical results[J]. Geophysical Journal International, 2005, 163: 192-224.
    [14]
    文广超, 苏林雪, 谢洪波, 等. "5·12"汶川地震前后四川省主要地质灾害时空发育规律[J]. 地质科技通报, 2021, 40(4): 143-152. doi: 10.19509/j.cnki.dzkq.2021.0430

    Wen G C, Su L X, Xie H B, et al. Temporal and spatial development law of major geological disasters in Sichuan Province before and after the "May 12" Wenchuan earthquake[J]. Bulletin of Geological Science and Technology, 2021, 40(4): 143-152(in Chinese with English abstract). doi: 10.19509/j.cnki.dzkq.2021.0430
    [15]
    言志信, 张刘平, 曹小红, 等. 地震作用下顺层岩质边坡动力响应规律及变形机制研究[J]. 岩土工程学报, 2011, 33(增刊1): 61-65. https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC2011S1011.htm

    Yan Z X, Zhang L P, Cao X H, et al. Dynamic response law and deformation mechanism of bedding rock slope under earthquake action[J]. Chinese Journal of Geotechnical Engineering, 2011, 33(S1): 61-65(in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC2011S1011.htm
    [16]
    刘汉香. 基于振动台试验的岩质斜坡地震动力响应规律研究[D]. 成都: 成都理工大学, 2014.

    Liu H X, Study on seismic dynamic response law of rocky slopes based on shaking table test[D]. Chengdu: Chengdu University of Technology, 2014(in Chinese with English abstract).
    [17]
    刘汉香, 许强, 周飞, 等. 含软弱夹层斜坡地震动力响应特性的振动台试验研究[J]. 岩石力学与工程学报, 2015, 34(5): 994-1005. https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX201505015.htm

    Liu H X, Xu Q, Zhou F, et al. Seismic dynamic response characteristics of slopes with soft interlayer[J]. Chinese Journal of Rock Mechanics and Engineering, 2015, 34(5): 994-1005(in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX201505015.htm
    [18]
    许强, 刘汉香, 邹威, 等. 斜坡加速度动力响应特性的大型振动台试验研究[J]. 岩石力学与工程学报, 2010, 29(12): 2420-2428. https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX201012009.htm

    Xu Q, Liu H X, Zou W, et al. Large shaking table test on dynamic response characteristics of slope acceleration[J]. Chinese Journal of Rock Mechanics and Engineering, 2010, 29(12): 2420-2424(in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX201012009.htm
    [19]
    周飞, 许强, 刘汉香, 等. 地震作用下含水平软弱夹层斜坡动力响应特性研究[J]. 岩土力学, 2016, 37(1): 133-139. https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX201601017.htm

    Zhou F, Xu Q, Liu H X, et al. Dynamic response characteristics of slopes with horizontal soft interlayer under earthquake action[J]. Rock and Soil Mechanics, 2016, 37(1): 133-139. https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX201601017.htm
    [20]
    陈臻林, 胡潇. 基于动力反透射模型的成层边坡稳定性分析[J]. 地质灾害与环境保护, 2013, 24(3): 76-80. https://www.cnki.com.cn/Article/CJFDTOTAL-DZHB201303018.htm

    Chen Z L, Hu X. Stability analysis of stratified slope based on dynamic inverse transmission model[J]. Geological Hazards and Environmental Protection, 2013, 24(3): 76-80(in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-DZHB201303018.htm
    [21]
    范留明, 黄润秋, 林峰. 基于射线理论的边坡地震反应分析[J]. 成都理工大学学报, 2000, 27(1): 69-72. https://www.cnki.com.cn/Article/CJFDTOTAL-CDLG200001012.htm

    Fan L M, Huang R Q, Lin F. Seismic response analysis of slope based on ray theory[J]. Journal of Chengdu University of Technology, 2000, 27(1): 69-72(in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-CDLG200001012.htm
    [22]
    范留明, 闫娜, 李宁. 薄弹性软弱夹层的动力响应模型[J]. 岩石力学与工程学报, 2006, 25(1): 88-92. https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX200601017.htm

    Fan L M, Yan N, Li N. Dynamic response model of thin soft interlayer considering interbedded reflecting waves[J]. Chinese Journal of Rock Mechanics and Engineering, 2006, 25(1): 88-92(in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX200601017.htm
    [23]
    王芳其, 李亚勇, 吕志涛, 等. SH波入射时软弱夹层的减震特性及影响因素分析[J]. 防灾减灾工程学报, 2016, 36(1): 31-37. https://www.cnki.com.cn/Article/CJFDTOTAL-DZXK201601004.htm

    Wang F Q, Li Y Y, Lu Z T, et al. Analysis of shock absorption characteristics and influencing factors of soft interlayer with SH wave incident[J]. Journal of Disaster Prevention and Mitigation Engineering, 2016, 36(1): 31-37(in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-DZXK201601004.htm
    [24]
    申荣. 小区域的电磁环境评价研究[D]. 西安: 西安电子科技大学, 2006.

    Shen R. Research on electromagnetic environmental assessment in small area[D]. Xi'an: Xidian University, 2006(in Chinese with English abstract).
    [25]
    黎在良, 刘殿魁. 固体中的波[M]. 北京: 科学出版社, 1995.

    Li Z L, Liu D K. Waves in solids[M]. Beijing: Science Press, 1995(in Chinese).
    [26]
    杜世通. 地震波动力学[M]. 北京: 石油大学出版社, 1996.

    Du S T. Seismic wave dynamics[M]. Beijing: Petroleum University Press, 1996(in Chinese).
    [27]
    崔圣华, 裴向军, 黄润秋. 大光包滑坡启动机制: 强震过程滑带非协调变形与岩体动力致损[J]. 岩石力学与工程学报, 2019, 38(2): 237-253. https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX201902003.htm

    Cui S H, Pei X J, Huang R Q. An initiation model of DGB landslide: Non-coordinated deformation inducing rock damage in sliding zone during strong seismic shaking[J]. Chinese Journal of Rock Mechanics and Engineering, 2019, 38(2): 237-253(in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX201902003.htm
    [28]
    魏荣帅, 邓显全. 超声纵波垂直入射波型转换的讨论[J]. 无损检测, 2018, 40(2): 46-47, 54. https://www.cnki.com.cn/Article/CJFDTOTAL-WSJC201802014.htm

    Wei R S, Deng X Q. Discussion on mode conversion of ultrasonic longitudinal wave in vertical incidence[J]. Nondestructive Testing, 2018, 40(2): 46-47, 54(in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-WSJC201802014.htm
    [29]
    胡德绥. 弹性波动力学[M]. 北京: 地质出版社, 1989.

    Hu D S. Elastic wave dynamics[M]. Beijing: Geological Publishing House, 1989(in Chinese).
    [30]
    朱凌, 裴向军, 崔圣华, 等. 基于动三轴试验的大光包滑坡层间错动带动力特性研究[J]. 工程地质学报, 2018, 26(3): 647-654. https://www.cnki.com.cn/Article/CJFDTOTAL-GCDZ201803011.htm

    Zhu L, Pei X J, Cui S H, et al. Study on dynamic characteristics of interlayer staggered zone of Daguangbao landslide based on dynamic triaxial test[J]. Journal of Engineering Geology, 2018, 26(3): 647-654(in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-GCDZ201803011.htm
    [31]
    黄润秋, 裴向军, 崔圣华. 大光包滑坡滑带岩体碎裂特征及其形成机制研究[J]. 岩石力学与工程学, 2016, 35(1): 1-15. https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX201601001.htm

    Huang R Q, Pei X J, Cui S H. Study on rock mass fragmentation characteristics and formation mechanism of Daguangbao landslide slip zone[J]. Journal of Rock Mechanics and Engineering, 2016, 35(1): 1-15(in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX201601001.htm
    [32]
    黄润秋, 裴向军, 李天斌. 汶川地震触发大光包巨型滑坡基本特征及形成机理分析[J]. 工程地质学报, 2008, 16(6): 730-741. https://www.cnki.com.cn/Article/CJFDTOTAL-GCDZ200806002.htm

    Huang R Q, Pei X J, Li T B. Analysis on basic characteristics and formation mechanism of Daguangbao giant landslide triggered by Wenchuan earthquake[J]. Journal of Engineering Geology, 2008, 16(6): 730-741(in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-GCDZ200806002.htm
    [33]
    裴向军, 崔圣华, 黄润秋. 大光包滑坡启动机制: 强震过程滑带动力扩容与水击效应[J]. 岩石力学与工程学报, 2018, 37(2): 430-448. https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX201802016.htm

    Pei X J, Cui S H, Huang R Q. Initiation mechanism of Daguangbao landslide: Dynamic expansion of sliding zone and water hammer effect during strong earthquake[J]. Journal of Rock Mechanics and Engineering, 2018, 37(2): 430-448(in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX201802016.htm
    [34]
    崔圣华, 裴向军, 黄润秋, 等. 大光包滑坡不连续地质特征及其工程地质意义[J]. 西南交通大学学报, 2019, 54(1): 61-72. https://www.cnki.com.cn/Article/CJFDTOTAL-XNJT201901009.htm

    Cui S H, Pei X J, Huang R Q, et al. Discontinuous geological characteristics of daguangbao landslide and its engineering geological significance[J]. Journal of Southwest Jiaotong University, 2019, 54(1): 61-72(in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-XNJT201901009.htm
    [35]
    刘伟庆, 李昌平, 王曙光, 等. 不同土性地基上高层隔震结构振动台试验对比研究[J]. 振动与冲击, 2013, 32(16): 128-133, 151. https://www.cnki.com.cn/Article/CJFDTOTAL-ZDCJ201316022.htm

    Liu W Q, Li C P, Wang S G, et al. Shaking table test of high-rise isolated structures on different soil foundations[J]. Vibration and Shock, 2013, 32(16): 128-133, 151(in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-ZDCJ201316022.htm
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article Views(366) PDF Downloads(30) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return