Volume 42 Issue 1
Jan.  2023
Turn off MathJax
Article Contents
Han Yan, Hu Yating, Wang Qian, Shi Minghui, Zhou Lian. Progress of copper isotope and its application in environmental pollution tracing[J]. Bulletin of Geological Science and Technology, 2023, 42(1): 378-387. doi: 10.19509/j.cnki.dzkq.2022.0178
Citation: Han Yan, Hu Yating, Wang Qian, Shi Minghui, Zhou Lian. Progress of copper isotope and its application in environmental pollution tracing[J]. Bulletin of Geological Science and Technology, 2023, 42(1): 378-387. doi: 10.19509/j.cnki.dzkq.2022.0178

Progress of copper isotope and its application in environmental pollution tracing

doi: 10.19509/j.cnki.dzkq.2022.0178
  • Received Date: 16 Jul 2021
  • In recent years, environmental problems have been a hot topic of social concern, such as heavy metal pollution in the atmosphere, soil and sediment, which are closely related to our life.To solve the heavy metal pollution in environment, the key is to determine the source of pollution.With the rapid development of stable isotope tracer technology, further achievements have been made in the study of the traceability of heavy metal pollution. Meanwhile, isotope tracer technology has become an important means in the traceability of heavy metal pollution.To better understand the isotope tracer technology application in environmental pollution sourcing, having the copper isotope as an example, the basic properties of copper, isotope fractionation in the geochemical process, processing and purification different types of samples, isotope analyze technique, tracer technique, the meta model has carried on the brief summary.This paper further describes the end members(natural input source and artificial input source), pollution path and pollution degreeof river pollution, smelter pollution and atmospheric particulate pollution. Finally, the application of isotope tracer is summarized and prospected.

     

  • loading
  • [1]
    王泽洲, 刘盛遨, 李丹丹, 等. 铜同位素地球化学及研究新进展[J]. 地学前缘, 2015, 22(5): 72-83. https://www.cnki.com.cn/Article/CJFDTOTAL-DXQY201505008.htm

    Wang Z Z, Liu S A, Li D D, et al. Geochemical characteristics of copper isotopes[J]. Earth Science Frontiers, 2015, 22(5): 72-83(in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-DXQY201505008.htm
    [2]
    Hoefs J. Stable isotope geochemistry[M]. Switzerland: Springer International Publishing, 2018.
    [3]
    引玉. 铜的地球化学性质、含量和共生元素[J]. 地质与勘探, 1975, 11(3): 20-27. https://www.cnki.com.cn/Article/CJFDTOTAL-DZKT197503004.htm

    Yin Y. The geochemical properties, contents and coherent elements of copper[J]. Geology and Exploration, 1975, 11(3): 20-27 (in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-DZKT197503004.htm
    [4]
    王新富, 李波. 铜同位素组成在铜矿床中的变化规律[J]. 地质科技情报, 2018, 37(3): 159-168. https://www.cnki.com.cn/Article/CJFDTOTAL-DZKQ201803021.htm

    Wang X F, Li B. Variation of Cu isotopic composition in copper deposits[J]. Geological Science and Technology Information. 2018, 37(3): 159-168(in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-DZKQ201803021.htm
    [5]
    王娜. 土壤重金属铜污染现状分析[J]. 土壤科学, 2019, 3(7): 181-185. https://www.cnki.com.cn/Article/CJFDTOTAL-DIZI202102009.htm

    Wang N. Analysis on the status of heavy metal copper pollution in soil[J]. Hans Journal of Soil Science, 2019, 3(7): 181-185(in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-DIZI202102009.htm
    [6]
    张俊. 红壤水稻土重金属铜对水稻生长影响及风险评价[D]. 南昌: 南昌工程学院, 2019.

    Zhang J. Effects of heavy metal copper on rice growth and its risk assessment in red paddy soil[D]. Nanchang: Nanchang Institute of Technology, 2019(in Chinese with English abstract).
    [7]
    王跃, 朱祥坤. 铜同位素在矿床学中的应用: 认识与进展[J]. 吉林大学学报: 地球科学版, 2010, 40(4): 739-751. https://www.cnki.com.cn/Article/CJFDTOTAL-CCDZ201004004.htm

    Wang Y, Zhu X K. Application of copper isotopes in mineral deposits: A review[J]. Journal of Jilin University: Earth Science Edition, 2010, 40(4): 739-751(in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-CCDZ201004004.htm
    [8]
    毛军. 浅析中高剂量铜元素对生猪养殖的影响[J]. 农家致富顾问, 2019(10): 116.

    Mao J. Effects of high and medium doses of copper on pig breeding[J]. Rural Wealth Consultant, 2019(10): 116(in Chinese).
    [9]
    杨果平. 饲料中微量元素添加过量的危害及其合理应用[J]. 四川畜牧兽医, 2019, 46(8): 46-47. https://www.cnki.com.cn/Article/CJFDTOTAL-SCXS201908020.htm

    Yang G P. A study on the effects of dietary microelements on food quality[J]. Sichuan Animal & Veterinary Sciences, 2019, 46(8): 46-47 (in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-SCXS201908020.htm
    [10]
    季立才. 微量元素铜与人体健康[J]. 自然杂志, 1991, 14(5): 375-378. https://www.cnki.com.cn/Article/CJFDTOTAL-ZRZZ199105012.htm

    Ji L C. Microelement copper and human health[J]. Chinese Journal of Nature, 1991, 14(5): 375-378 (in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-ZRZZ199105012.htm
    [11]
    李青仁, 王月梅. 微量元素铜与人体健康[J]. 微量元素与健康研究, 2007, 24(3): 61-63. https://www.cnki.com.cn/Article/CJFDTOTAL-WYJK200703026.htm

    Li Q R, Wang Y M. Microelement copper and human health[J]. Studies of Trace Elements and Health, 2007, 24(3): 61-63 (in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-WYJK200703026.htm
    [12]
    陈淑如, 崇雨田, 李新华. 遗传性铜代谢异常的致病机制及临床诊断[J]. 临床肝胆病杂志, 2019, 35(8): 1667-1672. doi: 10.3969/j.issn.1001-5256.2019.08.003

    Chen S R, Chong Y T, Li X H. The role of copper metabolism in the pathogenesis and clinical diagnosis of copper metabolism[J]. Journal of Clinical Hepatology, 2019, 35(8): 1667-1672(in Chinese with English abstract). doi: 10.3969/j.issn.1001-5256.2019.08.003
    [13]
    William R S, Thomas J M. Edward J C, et al. Absolute isotopic abundance ratio and the atomic weight of a reference sample of copper[J]. Journal of Research of the National Bureau of Standards, Section A: Physics and Chemistry, 1964, 68(6): 589.
    [14]
    葛军, 陈衍景, 邵宏翔. 铜同位素地球化学研究及其在矿床学应用的评述和讨论[J]. 地质与勘探, 2004, 40(3): 6-11. https://www.cnki.com.cn/Article/CJFDTOTAL-DZKT200403002.htm

    Ge J, Chen Y J, Shao H X. Progress in study of copper isotope and its application in metallogeny: A review[J]. Geology and Exploration, 2004, 40(3): 6-11(in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-DZKT200403002.htm
    [15]
    何德锋, 钟宏, 朱维光. 铜同位素的分馏机制及其在矿床学研究中的应用[J]. 岩石矿物学杂志, 2007, 26(4): 345-350. https://www.cnki.com.cn/Article/CJFDTOTAL-YSKW200704009.htm

    He D F, Zhong H, Zhu W G. The copper isotope fractional mechanism and its application to ore deposit study[J]. Acta Petrologica et Mineralogica, 2007, 26(4): 345-350(in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-YSKW200704009.htm
    [16]
    Wang L, Jin Y, Weiss D J, et al. Possible application of stable isotope compositions for the identification of metal sources in soil[J]. Journal of Hazardous Materials. 2021, 407: 124812.
    [17]
    Wiederhold J G. Metal stable isotope signatures as tracers in environmental geochemistry[J]. Environmental Science & Technology, 2015, 49(5): 2606-2624.
    [18]
    Zhao Y, Xue C, Liu S A, et al. Redox reactions control Cu and Fe isotope fractionation in a magmatic Ni-Cu mineralization system[J]. Geochimica et Cosmochimica Acta, 2019, 249: 42-58.
    [19]
    Alvarez C C, Quitté G, Schott J, et al. Experimental determination of Ni isotope fractionation during Ni adsorption from an aqueous fluid onto calcite surfaces[J]. Geochimica et Cosmochimica Acta, 2020, 273: 26-36.
    [20]
    Sherman D M, Little S H. Isotopic disequilibrium of Cu in marine ferromanganese crusts: Evidence from ab initio predictions of Cu isotope fractionation on sorption tobirnessite[J]. Earth and Planetary Science Letters, 2020, 549: 116540.
    [21]
    Ryan B M, Kirby J K, Degryse F, et al. Copper isotope fractionation during equilibration with natural and synthetic ligands[J]. Environmental Science & Technology, 2014, 48(15): 8620-8626.
    [22]
    Coutaud M, Méheut M, Viers J, et al. Copper isotope fractionation during excretion from a phototrophic biofilm[J]. Chemical Geology, 2019, 513: 88-100.
    [23]
    Araujo D F, Onzevera E P, Briant N, et al. Differences in copper isotope fractionation between mussels(Regulators) and oysters (Hyperaccumulators): Insights from a Ten-Year biomonitoring study[J]. Environmental Science & Technology, 2020, 55(1): 324-330.
    [24]
    Li S Z, Zhu X K, Wu L H, et al. Cu isotopic compositions in Elsholtzia splendens: Influence of soil condition and growth period on Cu isotopic fractionation in plant tissue[J]. Chemical Geology, 2016, 444: 49-58.
    [25]
    Weinstein C, Moynier F, Wang K, et al. Isotopic fractionation of Cu in plants[J]. Chemical Geology, 2011, 286(3/4): 266-271.
    [26]
    王倩, 侯清华, 张婷, 等. 铜同位素测定方法研究进展[J]. 矿物岩石地球化学通报, 2016, 35(3): 497-506. https://www.cnki.com.cn/Article/CJFDTOTAL-KYDH201603019.htm

    Wang Q, Hou Q H, Zhang T, et al. Progress in the determination of copper isotopes[J]. Bulletin of Mineralogy, Petrology and Geochemistry, 2016, 35(3): 497-506(in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-KYDH201603019.htm
    [27]
    Zeng J, Han G. Preliminary copper isotope study on particulate matter in Zhujiang River, southwest China: Application for source identification[J]. Ecotoxicology and Environmental Safety, 2020, 196: 110663.
    [28]
    Takano S, Liao W H, Tian H A, et al. Sources of particulate Ni and Cu in the water column of the northern South China Sea: Evidence from elemental and isotope ratios in aerosols and sinking particles[J]. Marine Chemistry, 2020, 219: 103751.
    [29]
    Schleicher N J, Weiss D J, Dong S, et al. A global assessment of copper, zinc, and lead isotopes in mineral dust sources and aerosols[J]. Frontiers in Earth Science, 2020, 8: 167.
    [30]
    Dong S, Ochoa Gonzalez R, Harrison R M, et al. Isotopic signatures in atmospheric particulate matter suggest important contributions from recycled gasoline for lead and non-exhaust traffic sources for copper and zinc in aerosols in London, United Kingdom[J]. Atmospheric Environment, 2017, 165: 88-98.
    [31]
    Bohdan K Í, Adéla Í, Vojtěch E, et al. Variability of the copper isotopic composition in soil and grass affected by mining and smelting in Tsumeb, Namibia[J]. Chemical Geology, 2018, 493: 121-135.
    [32]
    Su J, Mathur R, Brumm G, et al. Tracing copper migration in the Tongling area through copper isotope values in soils and waters[J]. International Journal of Environmental Research & Public Health, 2018, 15(12): 2661.
    [33]
    Yang S C, Hawco N J, Gonzalez P P, et al. A new purification method for Ni and Cu stable isotopes in seawater provides evidence for widespread Ni isotope fractionation by phytoplankton in the North Pacific[J]. Chemical Geology, 2020, 547(3/4): 119662.
    [34]
    Moynier F, Vance D, Fujii T, et al. The isotope geochemistry of zinc and copper[M]. Reviews in Mineralogy and Geochemistry, 2017, 82(1): 543-600.
    [35]
    Maréchal C N, Télouk P, Albarède F. Precise analysis of copper and zinc isotopic compositions by plasma-source mass spectrometry[J]. Chemical Geology, 1999, 156(1/4): 251-273.
    [36]
    郝春莉. 铜锌铁同位素示踪技术在生物和环境领域中的应用[J]. 化学工程与装备, 2016(9): 262-264. https://www.cnki.com.cn/Article/CJFDTOTAL-FJHG201609086.htm

    Hao C L. Application of copper, zinc and iron isotope tracer technology in biological and environmental fields[J]. Chemical Engineering & Equipment, 2016(9): 262-264(in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-FJHG201609086.htm
    [37]
    张晓静, 胡清源, 朱风鹏, 等. 电感耦合等离子体质谱在同位素分析中的研究进展[J]. 分析试验室, 2008, 27(12): 389-394. https://www.cnki.com.cn/Article/CJFDTOTAL-FXSY2008S2115.htm

    Zhang X J, Hu Q Y, Zhu F P, et al. Research progress of isotope analysis by inductively coupled plasma mass spectrometry[J]. Chinese Journal of Analysis Laboratory, 2008, 27(12): 389-394(in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-FXSY2008S2115.htm
    [38]
    Hou Q H, Zhou L, Gao S, et al. Use of Ga for mass bias correction for the accurate determination of copper isotope ratio in the NIST SRM 3114 Cu standard and geological samples by MC-ICPMS[J]. Journal of Analytical Atomic Spectrometry, 2016, 31(1): 280-287.
    [39]
    Larner F, Rehk Mper M, Coles B J, et al. A new separation procedure for Cu prior to stable isotope analysis by MC-ICP-MS[J]. Journal of Analytical Atomic Spectrometry, 2011, 26(8): 1627-1632.
    [40]
    Wang Q, Zhou L, Little S H, et al. The geochemical behavior of Cu and its isotopes in the Yangtze River[J]. Science of the Total Environment, 2020, 728: 138428.
    [41]
    曹人升, 范明毅, 黄先飞, 等. 同位素示踪法在大气颗粒物重金属污染溯源中的应用进展[J]. 环境污染与防治, 2017, 39(2): 212-216. https://www.cnki.com.cn/Article/CJFDTOTAL-HJWR201702021.htm

    Cao R S, Fan M Y, Huang X F, et al. Application of isotope tracer method in the traceability of heavy metal pollution in atmospheric particles[J]. Environmental Pollution & Control, 2017, 39(2): 212-216(in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-HJWR201702021.htm
    [42]
    郑志侠. 大气颗粒物中重金属污染研究进展[J]. 现代农业科技, 2013(3): 241-243. https://www.cnki.com.cn/Article/CJFDTOTAL-ANHE201303168.htm

    Zheng Z X. Research progress of heavy metal pollution in atmospheric particulate matter[J]. Modern Agricultural Science and Technology, 2013(3): 241-243(in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-ANHE201303168.htm
    [43]
    于瑞莲, 胡恭任, 袁星, 等. 同位素示踪技术在沉积物重金属污染溯源中的应用[J]. 地球与环境, 2008, 36(3): 245-250. https://www.cnki.com.cn/Article/CJFDTOTAL-DZDQ200803009.htm

    Yu R L, Hu G R, Yuan X, et al. Application of isotope tracer technique in traceability of heavy metal contamination in sediments[J]. Earth and Environment, 2008, 36(3): 245-250(in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-DZDQ200803009.htm
    [44]
    孙玮玮, 毕春娟, 陈振楼, 等. 稳定性同位素示踪技术在环境领域的应用初探[J]. 环境科学与技术, 2009, 32(9): 88-92. https://www.cnki.com.cn/Article/CJFDTOTAL-FJKS200909023.htm

    Sun W W, Bi C J, Chen Z L, et al. Application of stable isotope tracer technique in environmental field[J]. Environmental Science & Technology, 2009, 32(9): 88-92(in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-FJKS200909023.htm
    [45]
    龚杰, 孙紫童, 冯璐, 等. 武汉市东西湖区主要湖泊表层沉积物重金属污染特征与生态风险评价[J]. 地质科技通报, 2021, 40(3): 204-210. doi: 10.19509/j.cnki.dzkq.2021.0313

    Gong J, Sun Z T, Feng L, et al. Pollution characteristics and ecological risk assessment of heavy metals in surface sediments of main lakes in Dongxihu district, Wuhan[J]. Bulletin of Geological Science and Technology, 2021, 40(3): 204-210(in Chinese with English abstract). doi: 10.19509/j.cnki.dzkq.2021.0313
    [46]
    王攀, 靳孟贵, 路东臣, 等. 永城市浅层地下水污染分布特征及来源识别[J]. 地质科技通报, 2022, 41(1): 260-268. doi: 10.19509/j.cnki.dzkq.2021.0136

    Wang P, Jin M G, Lu D C, et al. Distribution characteristics and source identification of shallow groundwater pollution in Yongcheng City[J]. Bulletin of Geological Science and Technology, 2022, 41(1): 260-268(in Chinese with English abstract). doi: 10.19509/j.cnki.dzkq.2021.0136
    [47]
    周旭华. 城市污染河流水污染控制技术研究[J]. 低碳世界, 2021, 11(2): 36-37. https://www.cnki.com.cn/Article/CJFDTOTAL-DTSJ202102018.htm

    Zhou X H. Water pollution control technology of urban polluted river[J]. Low Carbon World, 2021, 11(2): 36-37(in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-DTSJ202102018.htm
    [48]
    Fekiacova Z, Cornu S, Pichat S. Tracing contamination sources in soils with Cu and Zn isotopic ratios[J]. Science of the Total Environment, 2015, 517: 96-105.
    [49]
    Vance D, Archer C, Bermin J, et al. The copper isotope geochemistry of rivers and the oceans[J]. Earth and Planetary Science Letters, 2008, 274(1/2): 204-213.
    [50]
    Kimball B E, Mathur R, Dohnalkova A C, et al. Copper isotope fractionation in acid mine drainage[J]. Geochimica et Cosmochimica Acta, 2009, 73(5): 1247-1263.
    [51]
    刘文辉, 马腾, 李俊琦, 等. 资江河口区农田土壤重金属污染评价及来源分析[J]. 地质科技通报, 2021, 40(2): 138-146. doi: 10.19509/j.cnki.dzkq.2021.0212

    Liu W H, Ma T, Li J Q, et al. Pollution assessment and source analysis of heavy metals in agricultural soil around Zijiang River estuary[J]. Bulletin of Geological Science and Technology, 2021, 40(2): 138-146(in Chinese with English abstract). doi: 10.19509/j.cnki.dzkq.2021.0212
    [52]
    李传飞, 刘登璐, 赵平, 等. 某区域内矿区土壤重金属污染与生态风险评价[J]. 四川环境, 2021, 40(2): 141-148. https://www.cnki.com.cn/Article/CJFDTOTAL-SCHJ202102021.htm

    Li C F, Liu D L, Zhao P, et al. Evaluation of soil heavy metal pollution and ecological risk in a mining area[J]. Sichuan Environment, 2021, 40(2): 141-148(in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-SCHJ202102021.htm
    [53]
    严梅. 金属矿区重金属污染评价分析[J]. 中国资源综合利用, 2021, 39(4): 148-150. https://www.cnki.com.cn/Article/CJFDTOTAL-ZWZS202104044.htm

    Yan M. Evaluation and analysis of heavy metal pollution in metal mining areas[J]. China Resources Comprehensive Utilization, 2021, 39(4): 148-150(in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-ZWZS202104044.htm
    [54]
    Schilling K, Basu A, Kaplan A, et al. Metal distribution, bioavailability and isotope variations in polluted soils from Lower Swansea Valley, UK[J]. Environmental Geochemistry and Health, 2021, 43: 2899-2912.
    [55]
    Mihaljeviĉ M, Baieta R, Ettler V, et al. Tracing the metal dynamics in semi-arid soils near mine tailings using stable Cu and Pb isotopes[J]. Chemical Geology, 2019, 515: 61-76.
    [56]
    Šillerová H, Chrastnỳ V, Vitková M, et al. Stable isotope tracing of Ni and Cu pollution in North-East Norway: Potentials and drawbacks[J]. Environmental Pollution, 2017, 228: 149-157.
    [57]
    苏鹏, 陆达伟, 杨学志, 等. 非传统稳定同位素在大气颗粒物溯源中的应用[J]. 中国科学: 化学, 2018, 48(10): 1163-1170. https://www.cnki.com.cn/Article/CJFDTOTAL-JBXK201810003.htm

    Su P, Lu D W, Yang X Z, et al. Application of non-traditional stable isotopes in source tracing of airborne particulate matter[J]. Scientia Sinica: Chimica, 2018, 48(10): 1163-1170(in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-JBXK201810003.htm
    [58]
    汪玉洁, 涂振权, 周理, 等. 大气颗粒物重金属元素分析技术研究进展[J]. 光谱学与光谱分析, 2015, 35(4): 1030-1032. https://www.cnki.com.cn/Article/CJFDTOTAL-GUAN201504038.htm

    Wang Y J, Tu Z Q, Z L, et al. Research progress in analytical technology for heavy metals in atmospheric particles[J]. Spectroscopy and Apectral Analysis, 2015, 35(4): 1030-1032(in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-GUAN201504038.htm
    [59]
    Ochoa-González R, Strekopytov S, Amato F, et al. New insights from zinc and copper isotopic compositions into the sources of atmospheric particulate matter from two major European cities[J]. Environmental Science and Technology, 2016, 50(18): 9816-9824.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article Views(505) PDF Downloads(79) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return