Volume 41 Issue 6
Nov.  2022
Turn off MathJax
Article Contents
Xu Qingjie, Liu Yong, Zhan Weiwen, Guo Jingkai, Li Xingrui. State recognition method of hydrodynamic pressure-driven landslides based on a generative adversarial network[J]. Bulletin of Geological Science and Technology, 2022, 41(6): 129-136. doi: 10.19509/j.cnki.dzkq.2022.0215
Citation: Xu Qingjie, Liu Yong, Zhan Weiwen, Guo Jingkai, Li Xingrui. State recognition method of hydrodynamic pressure-driven landslides based on a generative adversarial network[J]. Bulletin of Geological Science and Technology, 2022, 41(6): 129-136. doi: 10.19509/j.cnki.dzkq.2022.0215

State recognition method of hydrodynamic pressure-driven landslides based on a generative adversarial network

doi: 10.19509/j.cnki.dzkq.2022.0215
  • Received Date: 19 May 2022
  • Identifying the states of hydrodynamic pressure-driven landslides can more effectively assist in the analysis of the landslide deformation law, and accurately identifying the landslide state is of great significance for the in-depth study of the hydrodynamic pressure-driven landslide state. Aiming at the problem that there are few abrupt states of hydrodynamic pressure-driven landslides, it is difficult to obtain relevant features, which leads to poor state recognition performance, and a generative adversarial network learning method for landslide state recognition is proposed.In this method, the landslide state monitoring data matrix is constructed, a reasonable generator network is designed based on a small number of data samples to complete the data amplification of the landslide states, and the discriminator network is designed to realize the screening of the amplified data, and the classifying landslide states being realized through the confrontation generation network to achieve the purpose of landslide status identification. Taking the Baishuihe landslide in the Three Gorges Reservoir area as the research object, multisource monitoring data such as rainfall, reservoir water level, deep displacement, and surface displacement are normalized. The states recognition generative adversarial network completes the classification and identification of the landslide state. The results show that the generative adversarial network has high accuracy for landslide state recognition. The research method in this paper can accurately identify and classify the landslide state in the target area.

     

  • loading
  • [1]
    谭建民, 韩会卿, 伏永朋. 库水位升降条件下滑坡的稳定性极小状态: 以三峡库区为例[J]. 工程勘察, 2012, 40(4): 42-46. https://www.cnki.com.cn/Article/CJFDTOTAL-GCKC201204011.htm

    Tan J M, Han H Q, Fu Y P. Lowest stability state of landslides under rising and descending of reservoir water level: A case study on Three Gorges area[J]. Geotechnical Investigation & Surveying, 2012, 40(4): 42-46(in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-GCKC201204011.htm
    [2]
    焦朋朋, 陈洪凯, 张金浩, 等. 三峡库区消落带滑坡灾害引发生态环境问题的研究进展[J]. 重庆师范大学学报: 自然科学版, 2022, 39(2): 46-55. https://www.cnki.com.cn/Article/CJFDTOTAL-CQSF202202007.htm

    Jiao P P, Chen H K, Zhang J H, et al. Research progress on ecological environment problems caused by landslides in water-level-fluctuating zone of Three Gorges Reservoir area[J]. Journal of Chongqing Normal University: Natural Science, 2022, 39(2): 46-55(in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-CQSF202202007.htm
    [3]
    唐军峰, 唐雪梅, 肖鹏, 等. 库水位升降与降雨作用下大型滑坡体渗流稳定性分析[J]. 地质科技通报, 2021, 40(4): 153-161. doi: 10.19509/j.cnki.dzkq.2021.0409

    Tang J F, Tang X M, Xiao P, et al. Analysis of seepage stability of large-scale landslide under water-level fluctuation and rainfall[J]. Bulletin of Geological Science and Technology, 2021, 40(4): 153-161(in Chinese with English abstract). doi: 10.19509/j.cnki.dzkq.2021.0409
    [4]
    许强. 滑坡的变形破坏行为与内在机理[J]. 工程地质学报, 2012, 20(2): 145-151. doi: 10.3969/j.issn.1004-9665.2012.02.001

    Xu Q. Theoretical studies on prediction of landslides using slope deformation process data[J]. Journal of Engineering Geology, 2012, 20(2): 145-151(in Chinese with English abstract). doi: 10.3969/j.issn.1004-9665.2012.02.001
    [5]
    易庆林, 张明玉, 文凯. 三峡库区白水河滑坡变形特征及影响因素的阶段分析[J]. 三峡大学学报: 自然科学版, 2017, 39(1): 38-42. https://www.cnki.com.cn/Article/CJFDTOTAL-WHYC201701007.htm

    Yi Q L, Zhang M Y, Wen K. Periodic analysis of deformation characteristics and influential factors of Baishuihe landslide in Three Gorges Reservoir area[J]. Journal of China Three Gorges University: Natural Sciences, 2017, 39(1): 38-42(in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-WHYC201701007.htm
    [6]
    杨登芳, 胡新丽, 徐楚, 等. 基于物理模型试验的多层滑带滑坡变形演化特征[J]. 地质科技通报, 2022, 41(2): 300-308. doi: 10.19509/j.cnki.dzkq.2021.0069

    Yang D F, Hu X L, Xu C, et al. Deformation, and evolution characteristics of landslides with multiple sliding zones based on physical model test[J]. Bulletin of Geological Science and Technology, 2022, 41(2): 300-308(in Chinese with English abstract). doi: 10.19509/j.cnki.dzkq.2021.0069
    [7]
    刘勇, 秦志萌, 刘曼. 基于状态划分的滑坡位移预测方法研究[J]. 地质科技情报, 2018, 37(1): 184-189. doi: 10.19509/j.cnki.dzkq.2018.0125

    Liu Y, Qin Z M, Liu M. Landslide displacement prediction method based on state division[J]. Geological Science and Technology Information, 2018, 37(1): 184-189(in Chinese with English abstract). doi: 10.19509/j.cnki.dzkq.2018.0125
    [8]
    刘勇, 胡宝丹, 陈喆. 滑坡监测点多信息相似性度量方法研究[J]. 岩土力学, 2019, 40(10): 4001-4010. doi: 10.16285/j.rsm.2018.2186

    Liu Y, Hu B D, Chen Z. A similarity measurement method for multiple information data of landslide[J]. Rock and Soil Mechanics, 2019, 40(10): 4001-4010(in Chinese with English abstract). doi: 10.16285/j.rsm.2018.2186
    [9]
    张德成. 滑坡预测预报研究[D]. 昆明: 昆明理工大学, 2015.

    Zhang D C. Research on landslide prediction and forecast[D]. Kunming: Kunming University of Science and Technology, 2015.
    [10]
    向家松, 文宝萍, 陈明. 结构复杂滑坡活动对库水位变化的响应特征: 以三峡库区柴湾滑坡为例[J]. 水文地质工程地质, 2017, 44(4): 71-77. https://www.cnki.com.cn/Article/CJFDTOTAL-SWDG201704011.htm

    Xiang J S, Wen B P, Chen M. Activity response of a landslide with complex structure to fluctuation of reservoir water level: A case study of the Chaiwan landslide in the Three Gorges Reservoir[J]. Hydrogeology & Engineering Geology, 2017, 44(4): 71-77(in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-SWDG201704011.htm
    [11]
    胡新丽, 唐辉明, 李长冬. 基于参数反演的保扎滑坡变形破坏机理研究[J]. 工程地质学报, 2011, 19(6): 795-801. https://www.cnki.com.cn/Article/CJFDTOTAL-GCDZ201106000.htm

    Hu X L, Tang H M, Li C D. Deformation mechanism of Baozha landslide with parametric back analysis[J]. Journal of Engineering Geology, 2011, 19(6): 795-801(in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-GCDZ201106000.htm
    [12]
    邬爱清, 丁秀丽, 李会中. 非连续变形分析方法模拟千将坪滑坡启动与滑坡全过程[J]. 岩石力学与工程学报, 2006, 25(7): 1297-1303. https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX200607000.htm

    Wu A Q, Ding X L, Li H Z. Numerical simulation of startup and whole failure process of Qianjiangping landslide using discontinuous deformation analysis method[J]. Chinese Journal of Rock Mechanics and Engineering, 2006, 25(7): 1297-1303(in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX200607000.htm
    [13]
    Qi S W, Yan F Z, Wang S J, et al. Characteristics, mechanism and development tendency of deformation of Maoping landslide after commission of Geheyan Reservoir on the Qingjiang River, Hubei Province, China[J]. Engineering Geology, 2006, 86(1): 37-51.
    [14]
    Xie M L, Zheng W H. Landslide evolution assessment based on InSAR and real-time monitoring of a large reactivated landslide, Wenchuan, China[J]. Engineering Geology, 2020, 277(10): 57-81.
    [15]
    Long J J, Li C D, Liu Y, et al. A multi-feature fusion transfer learning method for displacement prediction of rainfall reservoir-induced landslide with step-like deformation characteristics[J]. Engineering Geology, 2022, 297(10): 64-94.
    [16]
    Goodfellow I J, Pouget-Abadie J, Mirza M, et al. Generative adversarial networks[J]. Conference on Neural Information Processing Systems, 2014, 3(1): 2672-2680.
    [17]
    陈阳, 王怀彬. 基于生成对抗网络的网络入侵检测系统[J]. 天津理工大学学报, 2021, 37(3): 25-29. https://www.cnki.com.cn/Article/CJFDTOTAL-TEAR202103005.htm

    Chen Y, Wang H B. Network intrusion detection system based on generative adversarial networks[J]. Journal of Tianjin University of Technology, 2021, 37(3): 25-29(in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-TEAR202103005.htm
    [18]
    He Z, Liu H, Wang Y W, et al. Generative adversarial networks-based semi-supervised learning for hyperspectral image classification[J]. Remote Sensing, 2017, 9(10): 1-7.
    [19]
    徐峰, 范春菊, 徐勋建, 等. 基于变分模态分解和AMPSO-SVM耦合模型的滑坡位移预测[J]. 上海交通大学学报, 2018, 52(10): 1388-1395. https://www.cnki.com.cn/Article/CJFDTOTAL-SHJT201810031.htm

    Xu F, Fan C J, Xu X J, et al. Displacement prediction of landslide based on variational mode decomposition and AMPSO-SVM coupling model[J]. Journal of Shanghai Jiaotong University, 2018, 52(10): 1388-1395(in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-SHJT201810031.htm
    [20]
    鲁涛. 范家坪、白水河滑坡形成机理及后期演化趋势预测[D]. 湖北宜昌: 山峡大学, 2012.

    Lu T. Study of formation mechanism and later trend prediction of Fanjiaping landslide and Baishuihe landslide[D]. Yichang, Hubei: China Three Gorges University, 2012(in Chinese with English abstract).
    [21]
    覃瀚萱, 桂蕾, 余玉婷, 等. 基于滑坡灾害预警分级的应急处置措施[J]. 地质科技通报, 2021, 40(4): 187-195. doi: 10.19509/j.cnki.dzkq.2021.0412

    Qin H X, Gui L, Yu Y T, et al. Emergency measures based on early warning classification of landslide[J]. Bulletin of Geological Science and Technology, 2021, 40(4): 187-195(in Chinese with English abstract). doi: 10.19509/j.cnki.dzkq.2021.0412
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article Views(393) PDF Downloads(49) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return