Volume 42 Issue 3
May  2023
Turn off MathJax
Article Contents
Wu Danhong, Wu Li, Yan Tianjun, He Ruibing, Xie Lingli, Dong Daojun. Evaluation of the blasting effects of insitu two-to-four lane expansion in the municipal tunnels based on EAHP model[J]. Bulletin of Geological Science and Technology, 2023, 42(3): 46-54. doi: 10.19509/j.cnki.dzkq.2022.0222
Citation: Wu Danhong, Wu Li, Yan Tianjun, He Ruibing, Xie Lingli, Dong Daojun. Evaluation of the blasting effects of insitu two-to-four lane expansion in the municipal tunnels based on EAHP model[J]. Bulletin of Geological Science and Technology, 2023, 42(3): 46-54. doi: 10.19509/j.cnki.dzkq.2022.0222

Evaluation of the blasting effects of insitu two-to-four lane expansion in the municipal tunnels based on EAHP model

doi: 10.19509/j.cnki.dzkq.2022.0222
  • Received Date: 28 Nov 2021
  • To accurately evaluate the blasting effect of tunnel demolition, guarantee the normal traffic of vehicles during the blasting for insitu two-to-four lane expansion in the municipal tunnels, and reduce the risk of blasting demolition as well as expansion of existing tunnel linings, a comprehensive evaluation model of the tunnel blasting effect based on EAHP was established with the matter-element theory. First, 29 evaluation factors were selected from 5 aspects: blasting scheme design, surroundings of blasting area, blasting quality, blasting materials, blasting safety technology, and 5 evaluation grades were demarcated. Second, the primary correlation function established with extension transformation was adopted to calculate the correlation degree of influencing factors of blasting effects to the evaluation grade, an analytic hierarchy process (AHP) method was introduced to determine the index weight, and the blasting effect grade was determined according to the principle of maximum correlation degree. Therefore, an integrated evaluation method based on Extenics-AHP, namely, EAHP, was established. The results showed that this method was applied to the blasting effect evaluation of the insitu two-to-four lane expansion project in Loushan Tunnel in Zhejiang Province, and the blasting effect evaluation result was Kmax=K2=-0.030 9, namely, the blasting effect evaluation level of the insitu two-to-four lane expansion in the tunnel was "good blasting effect", which was consistent with the actual condition of the project. Therefore, the evaluation indexes and weight coefficients selected based on EAHP model were reasonable and reliable, and the maximum correlation degree obtained by extension transformation could also better reflect the grade of the tunnel blasting effect, indicating this evaluation method had better adaptability to tunnel blasting effect evaluation.

     

  • loading
  • [1]
    吴波, 兰扬斌, 杨建新, 等. 新建隧道爆破对临近隧道振动特性的影响研究[J]. 中国安全科学学报, 2019, 29(11): 89-95. https://www.cnki.com.cn/Article/CJFDTOTAL-ZAQK201911018.htm

    Wu B, Lan Y B, Yang J X, et al. Influence of new tunnel blasting on vibration characteristics of adjacent existing tunnel[J]. China Safety Science Journal, 2019, 29(11): 89-95(in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-ZAQK201911018.htm
    [2]
    Christian K, Andre V, Markus K. A tunnel information modelling framework to support management, simulations and visualisations in mechanised tunnelling projects[J]. Automation in Construction, 2017, 83: 78-90. doi: 10.1016/j.autcon.2017.07.006
    [3]
    Jelena N, Christian K, Janosch S. An integrated platform for design and numerical analysis of shield tunnelling processes on different levels of detail[J]. Advances in Engineering Software, 2017, 112: 165-179. doi: 10.1016/j.advengsoft.2017.05.012
    [4]
    Bansal V K. Application of geographic information systems in construction safety planning[J]. International Journal of Project Management, 2011, 31(29): 66-77. http://imensazan-pi.ir/wp-content/uploads/2017/12/Bansal-2011.pdf
    [5]
    蒋开春. 明月峡长江大桥水下中深孔爆破安全技术研究[J]. 铁道工程学报, 2019, 36(7): 44-47, 91. doi: 10.3969/j.issn.1006-2106.2019.07.008

    Jiang K C. Research on the underwater medium-deep hole blasting safety technology for Mingyuexia Yangtze River Bridge[J]. Journal of Railway Engineering Society, 2019, 36(7): 44-47, 91(in Chinese with English abstract). doi: 10.3969/j.issn.1006-2106.2019.07.008
    [6]
    Sacks1 R, Treckmann M, Rozenfeld O, et al. Visualization of work flow to support lean construction[J]. Journal of Construction Engineering and Management, 2009, 23(12): 1307-1315.
    [7]
    Ho C, Dzeng R. Construction safety training via e-learning: Learning effectiveness and user satisfaction[J]. Computers & Education, 2010, 55(2): 858-867. http://www.onacademic.com/detail/journal_1000035369319410_d41f.html
    [8]
    Yi K J, Langford D. Scheduling-based risk estimation and safety planning for construction projects[J]. Journal of Construction Engineering and Management, 2006, 21(19): 626-635. http://www.onacademic.com/detail/journal_1000037835799510_4e62.html
    [9]
    Yang H J, Chew D A S, Wu W W, et al. Design and implementation of an identification system in construction site safety for proactive accident prevention[J]. Accident Analysis and Prevention, 2012, 48(S1): 193-203. http://www.onacademic.com/detail/journal_1000035713964710_20cd.html
    [10]
    Venugopal M, Eastman C M, Sacks R, et al. Semantics of model views for information exchanges using the industry foundation class schema[J]. Advanced Engineering Informatics, 2012, 26(2): 411-428. doi: 10.1016/j.aei.2012.01.005
    [11]
    张志雄, 叶雪云, 殷志强, 等. 基于FAHP法的连续多跨渡槽拆除爆破安全评价[J]. 中国安全科学学报, 2020, 30(11): 67-74. doi: 10.16265/j.cnki.issn1003-3033.2020.11.010

    Zhang Z X, Ye X Y, Yin Z Q, et al. Safety evaluation of continuous multi-span aqueduct's demolition blasting based on FAHP method[J]. China Safety Science Journal, 2020, 30(11): 67-74(in Chinese with English abstract). doi: 10.16265/j.cnki.issn1003-3033.2020.11.010
    [12]
    Tan C, Tong T K, Chiu G C, et al. Non-structural fuzzy decision support system for evaluation of construction safety management system[J]. International Journal of Project Management, 2002, 34(26): 303-313. http://www.onacademic.com/detail/journal_1000034185104110_981b.html
    [13]
    谭松林, 黄玲, 李亚伟. 模糊层次综合评价在深埋隧道围岩质量分级中的应用[J]. 地质科技情报, 2009, 28(1): 105-108. https://www.cnki.com.cn/Article/CJFDTOTAL-DZKQ200901019.htm

    Tan S L, Huang L, Li Y W. Application of fuzzy-AHP comprehensive evaluation to the quality classification of wall rock in deep buried tunnels[J]. Geological Science and Technology Information, 2009, 28(1): 105-108(in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-DZKQ200901019.htm
    [14]
    张永刚, 王永红, 王梦恕. 渤海湾海底隧道工程施工风险评估与控制分析[J]. 土木工程学报, 2015, 48(增刊1): 414-418. https://www.cnki.com.cn/Article/CJFDTOTAL-TMGC2015S1074.htm

    Zhang Y G, Wang Y H, Wang M S. Risk assessment of construction for Bohai Bay Subsea Tunnel[J]. China Civil Engineering Journal, 2015, 48(S1): 414-418(in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-TMGC2015S1074.htm
    [15]
    沈世伟, 许君臣, 代树林, 等. 基于熵值赋权法的节理岩体隧道爆破质量可拓学评价[J]. 土木工程学报, 2013, 46(12): 118-126. https://www.cnki.com.cn/Article/CJFDTOTAL-TMGC201312019.htm

    Shen S W, Xu J C, Dai S L, et al. Extenics evaluation of joint rock tunnel blasting quality based on entropy weighting method[J]. China Civil Engineering Journal, 2013, 46(12): 118-126(in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-TMGC201312019.htm
    [16]
    Rozenfeld O, Sacks R, Rosenfeld Y, et al. Construction job safety analysis[J]. Safety Science, 2010, 48(4): 491-498. http://www.cabdirect.org/abstracts/20103080799.html
    [17]
    Chae S, Yoshida T. Application of RFID technology to prevention of collision accident with heavy equipment[J]. Automation in Construction, 2010, 19(3): 368-374. http://www.sciencedirect.com/science?_ob=ShoppingCartURL&_method=add&_eid=1-s2.0-S0926580509001976&originContentFamily=serial&_origin=article&_ts=1483810088&md5=e7276a6a1d1542d2934ab3da4612b62e
    [18]
    Guo H L, Li H. Life-cycle management of construction projects based on virtual prototyping technology[J]. Journal of Management in Engineering, 2010, 26(1): 41-47. http://repository.lib.polyu.edu.hk/jspui/bitstream/10397/1858/1/LCMVP-1.pdf
    [19]
    梁桂兰, 徐卫亚, 谈小龙. 基于熵权的可拓理论在岩体质量评价中的应用[J]. 岩土力学, 2010, 31(2): 535-540. https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX201002038.htm

    Liang G L, Xu W Y, Tan X L. Application of extension theory based on entropy weight in rock mass quality evaluation[J]. Rock and Soil Mechanics, 2010, 31(2): 535-540(in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX201002038.htm
    [20]
    左昌群, 陈建平. 基于可拓学理论的围岩分级方法在变质软岩隧道中的应用[J]. 地质科技情报, 2007, 26(3): 75-78. https://www.cnki.com.cn/Article/CJFDTOTAL-DZKQ200703015.htm

    Zuo C Q, Chen J P. Rock mass classification based on extenics theory applied in metamorphic soft rock tunnel[J]. Geological Science and Technology Information, 2007, 26(3): 75-78(in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-DZKQ200703015.htm
    [21]
    张明磊, 张益东, 季明, 等. 基于模糊可拓综合评价方法的巷道支护参数优化[J]. 采矿与安全工程学报, 2016, 33(6): 972-978. https://www.cnki.com.cn/Article/CJFDTOTAL-KSYL201606003.htm

    Zhang M L, Zhang Y D, Ji M, et al. Roadway support parameter optimization based on fuzzy extension synthetic evaluation[J]. Journal of Mining & Safety Engineering, 2016, 33(6): 972-978(in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-KSYL201606003.htm
    [22]
    郭永华, 龚设, 康三月, 等. 基于层次-可拓(AHP-Extenics)模型的既有隧道衬砌结构病害评价[J]. 隧道建设: 中英文, 2020, 40(增刊1): 115-122. https://www.cnki.com.cn/Article/CJFDTOTAL-JSSD2020S1015.htm

    Guo Y H, Gong S, Kang S Y, et al. Disease evaluation of existing tunnel lining based on AHP-Extenics model[J]. Tunnel Construction, 2020, 40(S1): 115-122(in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-JSSD2020S1015.htm
    [23]
    王述红, 王斐笠, 高红岩, 等. 基于可拓理论的边坡地震稳定性评价方法研究[J]. 土木工程学报, 2016, 49(增刊2): 132-137. https://www.cnki.com.cn/Article/CJFDTOTAL-TMGC2016S2023.htm

    Wang S H, Wang F L, Gao H Y, et al. Evaluation method of seismic slope stability based on extension theory[J]. China Civil Engineering Journal, 2016, 49(S2): 132-137(in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-TMGC2016S2023.htm
    [24]
    罗明明, 周宏, 郭绪磊, 等. 峡口隧道间歇性岩溶涌突水过程及来源解析[J]. 地质科技通报, 2021, 40(6): 246-254. doi: 10.19509/j.cnki.dzkq.2021.0054

    Luo M M, Zhou H, Guo X L, et al. Processes and sources identification of intermittent karst water inrush in Xiakou Tunnel[J]. Bulletin of Geological Science and Technology, 2021, 40(6): 246-254(in Chinese with English abstract). doi: 10.19509/j.cnki.dzkq.2021.0054
    [25]
    王剑非, 刘昆珏, 周文皎, 等. 香丽高速公路昌格洛滑坡-隧道工程病害三维数值分析[J]. 地质科技通报, 2022, 41(2): 34-43. doi: 10.19509/j.cnki.dzkq.2022.0009

    Wang J F, Liu K J, Zhou W J, et al. Three-dimensional numerical analysis of the Changgeluo landslide-tunnel engineering disaster on Shangri-La to Lijiang Highway[J]. Bulletin of Geological Science and Technology, 2022, 41(2): 34-43(in Chinese with English abstract). doi: 10.19509/j.cnki.dzkq.2022.0009
    [26]
    彭红明, 袁有靖, 李铜邦, 等. 青海天峻新关角隧道涌排水水源识别与量化分析[J]. 地质科技通报, 2022, 41(1): 60-70. doi: 10.19509/j.cnki.dzkq.2022.0026

    Peng H M, Yuan Y J, Li T B, et al. Identification and quantitative analysis of groundwater discharged from New Guanjiao Tunnel in Tianjun, Qinghai[J]. Bulletin of Geological Science and Technology, 2022, 41(1): 60-70(in Chinese with English abstract). doi: 10.19509/j.cnki.dzkq.2022.0026
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article Views(313) PDF Downloads(35) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return