Volume 42 Issue 1
Jan.  2023
Turn off MathJax
Article Contents
Liu Wei, Zhu Honghu, Wang Tao, Cheng Gang. Research progress of earth exploration technologies based on distributed acoustic sensing[J]. Bulletin of Geological Science and Technology, 2023, 42(1): 29-41. doi: 10.19509/j.cnki.dzkq.2022.0228
Citation: Liu Wei, Zhu Honghu, Wang Tao, Cheng Gang. Research progress of earth exploration technologies based on distributed acoustic sensing[J]. Bulletin of Geological Science and Technology, 2023, 42(1): 29-41. doi: 10.19509/j.cnki.dzkq.2022.0228

Research progress of earth exploration technologies based on distributed acoustic sensing

doi: 10.19509/j.cnki.dzkq.2022.0228
  • Received Date: 31 Jul 2021
  • As a new type of fiber optic sensing technology for long-distance, distributed and real-time monitoring, distributed acoustic sensing (DAS) has been a wide concern since its initiation. Compared with the traditional seismic wave sensing system (node array, geophone, seismometer), DAS has the advantages of high spatial sampling density, wide measurement range, and strong environmental adaptability (anti-electromagnetic interference, corrosion resistance, waterproof).Recently, researchers have carried out a large number of exploratory experiments around DAS technology and made important progress in the field of earth exploration.This paper reviews the latest research on the application of DAS technology for earth exploration. Starting from theworking concept of DAS, the basic concept of DAS is elaborated, and the performance of DAS and seismometer is fully compared.And we introduce the applications of DAS in oil and gas exploration, seismic observation, and structural imagingby reviewing several representative experiments. Finally, this paper summarizes the current bottleneck of the earth exploration technological system based on DAS and analyzes the development trends in the future.

     

  • loading
  • [1]
    施斌. 论大地感知系统与大地感知工程[J]. 工程地质学报, 2017, 25(3): 582-591. https://www.cnki.com.cn/Article/CJFDTOTAL-GCDZ201703002.htm

    Shi B. On the ground sensing system and ground sensing engineering[J]. Journal of Engineering Geology, 2017, 25(3): 582-591(in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-GCDZ201703002.htm
    [2]
    Company P T P, Philip D J, Christopher L. Distributed fibre optic sensor system: GB2222247[P]. 1990-2-28.
    [3]
    蔡海文, 叶青, 王照勇, 等. 分布式光纤声波传感技术研究进展[J]. 应用科学学报, 2018, 36(1): 41-58. doi: 10.3969/j.issn.0255-8297.2018.01.003

    Cai H W, Ye Q, Wang Z Y, et al. Progress in research of distributed fiber acoustic sensing techniques[J]. Journal of Applied Sciences, 2018, 36(1): 41-58(in Chinese with English abstract). doi: 10.3969/j.issn.0255-8297.2018.01.003
    [4]
    Lindsey N J, Martin E R. Fiber-optic seismology[J]. Annual Review of Earth and Planetary Sciences, 2021, 49(1): 309-336. doi: 10.1146/annurev-earth-072420-065213
    [5]
    Lindsey N J, Dawe T C, Ajo-Franklin J B. Illuminating seafloor faults and ocean dynamics with dark fiber distributed acoustic sensing[J]. Science, 2019, 366: 1103-1107. doi: 10.1126/science.aay5881
    [6]
    Sladen A, Rivet D, Ampuero J P, et al. Distributed sensing of earthquakes and ocean-solid earth interactions on seafloor telecom cables[J]. Nature Communications, 2019, 10(1): 1-8. doi: 10.1038/s41467-018-07882-8
    [7]
    Williams E F, Fernandez-Ruiz M R, Magalhaes R, et al. Distributed sensing of microseisms and teleseisms with submarine dark fibers[J]. Nature Communications, 2019, 10(1): 1-11. doi: 10.1038/s41467-018-07882-8
    [8]
    Walter F, Graeff D, Lindner F, et al. Distributed acoustic sensing of microseismic sources and wave propagation in glaciated terrain[J]. Nature Communications, 2020, 11(1): 1-10. doi: 10.1038/s41467-019-13993-7
    [9]
    Booth A D, Christoffersen P, Schoonman C, et al. Distributedacoustic sensing of seismic properties in a borehole drilled on a fast-flowing greenlandic outlet glacier[J]. Geophysical Research Letters, 2020, 47(13): 1-10.
    [10]
    Mestayer J, Cox B, Wills P, et al. Field trials of distributed acoustic sensing for geophysical monitoring[C]//Anon. SEG Technical Program Expanded Abstracts. [S. l. ]: Society of Exploration Geophysicists, 2011: 4253-4257.
    [11]
    Lindsey N J, Martin E R, Dreger D S, et al. Fiber-optic network observations of earthquake wavefields[J]. Geophysical Research Letters, 2017, 44(23): 11792-11799.
    [12]
    Dou S, Lindsey N, Wagner A M, et al. Distributed acoustic sensing for seismic monitoring of the near surface: A traffic-noise interferometry case study[J]. Scientific Reports, 2017, 7(1): 1-12. doi: 10.1038/s41598-016-0028-x
    [13]
    Lindsey N J. Fiber-optic seismology in theory and practice[D]. [S. l. ]: University of California Berkeley, 2019.
    [14]
    Dean T, Cuny T, Hartog A H. The effect of gauge length on axially incident P-waves measured using fibre optic distributed vibration sensing[J]. Geophysical Prospecting, 2017, 65(1): 184-193. doi: 10.1111/1365-2478.12419
    [15]
    Lindsey N J, Rademacher H, Ajo-Franklin J. On the broadband instrument response of fiber-optic DAS arrays[J]. Journal of Geophysical Research: Solid Earth, 2020, 125(2): 1-16.
    [16]
    Hartog A H. An introduction to distributed optical fibre sensors[M]. Boca Raton: The Chemical Rubber Company Press, 2017.
    [17]
    Parker T, Shatalin S, Farhadiroushan M. Distributed acoustic sensing: A new tool for seismic applications[J]. First Break, 2014, 32(2): 61-69.
    [18]
    Yu C, Zhan Z, Lindsey N J, et al. The potential of DAS in teleseismic studies: Insights from the goldstone experiment[J]. Geophysical Research Letters, 2019, 46(3): 1320-1328. doi: 10.1029/2018GL081195
    [19]
    Zhu T, Shen J, Martin E R. Sensing earth and environment dynamics by telecommunication fiber-optic sensors: An urban experiment in Pennsylvania, USA[J]. Solid Earth, 2021, 12(1): 219-235. doi: 10.5194/se-12-219-2021
    [20]
    Wang H F, Zeng X, Miller D E, et al. Ground motion response to an ML 4.3 earthquake using co-located distributed acoustic sensing and seismometer arrays[J]. Geophysical Journal International, 2018, 213(3): 2020-2036. doi: 10.1093/gji/ggy102
    [21]
    Daley T M, Miller D E, Dodds K, et al. Field testing of modular borehole monitoring with simultaneous distributed acoustic sensing and geophone vertical seismic profiles at Citronelle, Alabama[J]. Geophysical Prospecting, 2016, 64(5): 1318-1334. doi: 10.1111/1365-2478.12324
    [22]
    Zhan Z. Distributed acoustic sensing turns fiber-optic cables into sensitive seismic antennas[J]. Seismological Research Letters, 2020, 91(1): 1-15. doi: 10.1785/0220190112
    [23]
    Benioff H. A linear strain seismograph[J]. Bulletin of the Seismological Society of America, 1935, 25: 283-309. doi: 10.1785/BSSA0250040283
    [24]
    Hornman J C. Field trial of seismic recording using distributed acoustic sensing with broadside sensitive fibre-optic cables[J]. Geophysical Prospecting, 2017, 65(1): 35-46. doi: 10.1111/1365-2478.12358
    [25]
    Hornman K, Kuvshinov B, Zwartjes P, et al. Field trial of a broadside-sensitive distributed acoustic sensing cable forsurface seismic[C]//Anon. 75th European Association of Geoscientists and Engineers Conference and Exhibition 2013. [S. l. ]: European Association of Geoscientists & Engineers. 2013: Tu-04-08.
    [26]
    Kuvshinov B N. Interaction of helically wound fibre-optic cables with plane seismic waves[J]. Geophysical Prospecting, 2016, 64(3): 671-688. doi: 10.1111/1365-2478.12303
    [27]
    Ning I L C, Sava P. High-resolution multi-component distributed acoustic sensing[J]. Geophysical Prospecting, 2018, 66(6): 1111-1122. doi: 10.1111/1365-2478.12634
    [28]
    Papp B, Donno D, Martin J E, et al. A study of the geophysical response of distributed fibre optic acoustic sensors through laboratory-scale experiments[J]. Geophysical Prospecting, 2017, 65(5): 1186-1204. doi: 10.1111/1365-2478.12471
    [29]
    Zeng X, Lancelle C, Thurber C, et al. Properties of noise cross-correlation functions obtained from a distributed acoustic sensing array at Garner Valley, California[J]. Bulletin of the Seismological Society of America, 2017, 107(2): 603-610. doi: 10.1785/0120160168
    [30]
    Yuan S, Lellouch A, Clapp R G, et al. Near-surface characterization using a roadside distributed acoustic sensing array[J]. The Leading Edge, 2020, 39(9): 646-653. doi: 10.1190/tle39090646.1
    [31]
    Ajo-Franklin J B, Dou S, Lindsey N J, et al. Distributed acoustic sensing using dark fiber for near-surface characterization and broadband seismic event detection[J]. Scientific Reports, 2019, 9(1): 1328-1346. doi: 10.1038/s41598-018-36675-8
    [32]
    Wang Z, Lu B, Ye Q, et al. Recent progress in distributed fiber acoustic sensing with Phi-OTDR[J]. Sensors, 2020, 20(22): 1-26. doi: 10.1109/JSEN.2020.3028730
    [33]
    Gabai H, Eyal A. On the sensitivity of distributed acoustic sensing[J]. Optics Letters, 2016, 41(24): 5648-5651. doi: 10.1364/OL.41.005648
    [34]
    Wu M, Fan X, Liu Q, et al. Quasi-distributed fiber-optic acoustic sensing system based on pulse compression technique and phase-noise compensation[J]. Optics Letters, 2019, 44(24): 5969-5972. doi: 10.1364/OL.44.005969
    [35]
    佘骏宽, 朱鸿鹄, 张诚成, 等. 传感光纤-砂土界面力学性质的试验研究[J]. 工程地质学报, 2014, 22(5): 855-860. https://www.cnki.com.cn/Article/CJFDTOTAL-GCDZ201405014.htm

    She J K, Zhu H H, Zhang C C, et al. Experiment study on mechanical properties of interface between sensing optical fiber and sand[J]. Journal of Engineering Geology, 2014, 22(5): 855-860(in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-GCDZ201405014.htm
    [36]
    程刚, 施斌, 朱鸿鹄, 等. 光纤和砂土界面耦合性能的分布式感测试验研究[J]. 高校地质学报, 2019, 25(4): 487-494. https://www.cnki.com.cn/Article/CJFDTOTAL-GXDX201904002.htm

    Chen G, Shi B, Zhu H H, et al. Experimental study on coupling performance of fiber and sand interface based on distributed sensing[J]. Geological Journal of China Universities, 2019, 25(4): 487-494(in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-GXDX201904002.htm
    [37]
    Zhu H H, She J K, Zhang C C, et al. Experimental study on pullout performance of sensing optical fibers in compacted sand[J]. Measurement, 2015, 73: 284-294. doi: 10.1016/j.measurement.2015.05.027
    [38]
    Zhang C C, Zhu H H, Liu S P, et al. Quantifying progressive failure of micro-anchored fiber optic cable-sand interface via high-resolution distributed strain sensing[J]. Canadian Geotechnical Journal, 2020, 57(6): 871-902. doi: 10.1139/cgj-2018-0651
    [39]
    Zheng X, Shi B, Zhang C C, et al. Strain transfer mechanism in surface-bonded distributed fiber-optic sensors subjected to linear strain gradients: Theoretical modeling and experimental validation[J]. Measurement, 2021, 179: 109510. doi: 10.1016/j.measurement.2021.109510
    [40]
    施斌, 张丹, 朱鸿鹄. 地质与岩土工程分布式光纤监测技术[M]. 北京: 科学出版社, 2019.

    Shi B, Zhang D, Zhu H H. Distributed fiber optic sensing for geoengineering monitoring[M]. Beijing: Science Press, 2019(in Chinese).
    [41]
    张诚成, 施斌, 刘苏平, 等. 钻孔回填料与直埋式应变传感光缆耦合性研究[J]. 岩土工程学报, 2018, 40(11): 1959-1967. https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC201811002.htm

    Zhang C C, Shi B, Liu S P, et al. Mechanical coupling between borehole backfill and fiber-optic strain-sensing cable[J]. Chinese Journal of Geotechnical Engineering, 2018, 40(11): 1959-1967(in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC201811002.htm
    [42]
    Miller D, Parker T, Kashikar S, et al. Vertical seismic profiling using a fibre-optic cable as a distributed acoustic sensor[C]//Anon. 74th EAGE Conference and Exhibition incorporating EUROPEC 2012. European Association of Geoscientists & Engineers, 2012: cp-293-00803.
    [43]
    Willis M E, Barfoot D, Ellmauthaler A, et al. Quantitative quality of distributed acoustic sensing vertical seismicprofile data[J]. Leading Edge, 2016, 35(7): 605-609. doi: 10.1190/tle35070605.1
    [44]
    Lellouch A, Biondi B L. Seismic applications of downhole DAS[J]. Sensors, 2021, 21(9): 2897-2917. doi: 10.3390/s21092897
    [45]
    Kobayashi Y, Uematsu Y, Mochiji S, et al. A field experiment of walkaway distributed acoustic sensing vertical seismic profile in a deep and deviated onshore well in Japan using a fibre optic cable deployed inside coiled tubing[J]. Geophysical Prospecting, 2019, 68(2): 501-520.
    [46]
    Molenaar M M, Hill D, Webster P, et al. First downhole application of distributed acoustic sensing for hydraulic-fracturing monitoring and diagnostics[J]. SPE Drilling & Completion, 2012, 27(1): 32-38.
    [47]
    Bakku S K, Fehler M, Wills P, et al. Vertical seismic profiling using distributed acoustic sensing in a hydrofrac treatment well[C]//Anon. SEG Technical Program Expanded Abstracts. [S. l. ]: Society of Exploration Geophysicists, 2014: 5024-5028.
    [48]
    Byerley G, Monk D, Aaron P, et al. Time-lapse seismic monitoring of individual hydraulic fracstages using a downhole DAS array[J]. Leading Edge, 2018, 37(11): 802-810. doi: 10.1190/tle37110802.1
    [49]
    Teff J, Silver K, Langton D, et al. A technical comparison of downhole Methods through fiber optic VSP, in the eagle ford formation[C]//Anon. SEG Global Meeting Abstracts. [S. l. ]: Society of Exploration Geophysicists. 2016: 3343-3351.
    [50]
    Mateeva A, Lopez J, Chalenski D, et al. 4D DAS VSP as a tool for frequent seismic monitoring in deep water[J]. The Leading Edge, 2017, 36(12): 995-1000. doi: 10.1190/tle36120995.1
    [51]
    Zwartjes P, Mateeva A, Tatanova M, et al. 4D DAS VSP in deepwater: Proof of concept and next steps[C]//Anon. SEG Technical Program Expanded Abstracts. [S. l. ]: Society of Exploration Geophysicists. 2017: 5802-5807.
    [52]
    郭建. VSP技术应用现状及发展趋势[J]. 勘探地球物理进展, 2004, 27(1): 1-8. https://www.cnki.com.cn/Article/CJFDTOTAL-KTDQ200401000.htm

    Guo J. The application status and development trends of VSP technology[J]. Progress in Exploration Geophysics, 2004, 27(1): 1-8(in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-KTDQ200401000.htm
    [53]
    王德志, 刘天佑, 肖都建. 三维井地联合Walkaway VSP技术及其在泌阳凹陷的应用[J]. 地质科技情报, 2007, 26(2): 95-99. doi: 10.3969/j.issn.1000-7849.2007.02.018

    Wang D Z, Liu T Y, Xiao D J. 3D walkaway VSP technology and its application in the Biyang Depression[J]. Geological Science and Technology Information, 2007, 26(2): 95-99(in Chinese with English abstract). doi: 10.3969/j.issn.1000-7849.2007.02.018
    [54]
    李彦鹏, 李飞, 李建国, 等. DAS技术在井中地震勘探的应用[J]. 石油物探, 2020, 59(2): 242-249. doi: 10.3969/j.issn.1000-1441.2020.02.010

    Li Y P, Li F, Li J G, et al. Application of distributed acoustic sensing in borehole seismic exploration[J]. Geophysical Prospecting for Petroleum, 2020, 59(2): 242-249(in Chinese with English abstract). doi: 10.3969/j.issn.1000-1441.2020.02.010
    [55]
    周小慧, 陈伟, 杨江峰, 等. DAS技术在油气地球物理中的应用综述[J]. 地球物理学进展, 2021, 36(1): 338-350. https://www.cnki.com.cn/Article/CJFDTOTAL-DQWJ202101037.htm

    Zhou X H, Chen W, Yang J F, et al. Application review of DAS technology in oil and gas geophysics[J]. Progress in Geophysics, 2021, 36(1): 338-350(in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-DQWJ202101037.htm
    [56]
    De La Bernardie J, Bour O, Le Borgne T, et al. Thermal attenuation and lag time in fractured rock: Theory and field measurements from joint heat and solute tracer tests[J]. Water Resources Research, 2018, 54(12): 10053-10075.
    [57]
    Li L, Tan J Q, Schwarz B, et al. Recent advances and challenges of waveform-based seismic location methods at multiple scales[J]. Reviews of Geophysics, 2020, 58(1): 1-47.
    [58]
    Eaton D W, Van Der Baan M, Birkelo B, et al. Scaling relations and spectral characteristics of tensile microseisms: Evidence for opening/closing cracks during hydraulic fracturing[J]. Geophysical Journal International, 2014, 196(3): 1844-1857. doi: 10.1093/gji/ggt498
    [59]
    Jin G, Roy B. Hydraulic-fracture geometry characterization using low-frequency DAS signal[J]. The Leading Edge, 2017, 36(12): 975-980. doi: 10.1190/tle36120975.1
    [60]
    Karrenbach M, Dan K, Cole S, et al. Hydraulic-fracturing-induced strain and microseismic using in situ distributed fiber-optic sensing[J]. The Leading Edge, 2017, 36(10): 837-844. doi: 10.1190/tle36100837.1
    [61]
    Webster P, Wall J, Perkins C, et al. Micro-seismic detection using distributed acoustic sensing[C]//Anon. SEG Technical Program Expanded Abstracts 2013. [S. l. ]: Society of Exploration Geophysicists, 2013: 2459-2463.
    [62]
    Karrenbach M, Cole S, Ridge A, et al. Fiber-optic distributed acoustic sensing of microseismicity, strain and temperature during hydraulic fracturing[J]. Geophysics, 2019, 84(1): 11-23.
    [63]
    刘均荣, 史伟新, 李博宇, 等. 分布式光纤声音传感技术在油田中的应用及发展前景[J]. 地质科技情报, 2017, 36(5): 262-266. https://www.cnki.com.cn/Article/CJFDTOTAL-DZKQ201705037.htm

    Liu J R, Shi W X, Li B Y, et al. Applications and development prospect of distributed acoustic sensing technology in oilfields[J]. Geological Science and Technology Information, 2017, 36(5): 262-266(in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-DZKQ201705037.htm
    [64]
    赵巍, 张文彪, 李蒙, 等. 四维地震驱动的深海浊积岩油藏地质模型更新方法及应用: 以安哥拉PU油田为例[J]. 地质科技通报, 2022, 41(4): 301-308. doi: 10.19509/j.cnki.dzkq.2022.0115

    Zhao W, Zhang W B, Li M, et al. Updating and application for a reservoir geological model of deep-water turbidites: A case study of a 4D seismic survey from the PU Oilfield in Angola[J]. Bulletin of Geological Science and Technology, 2022, 41(4): 301-308 (in Chinese with English abstract). doi: 10.19509/j.cnki.dzkq.2022.0115
    [65]
    Wu H, Wong W F, Yang Z H, et al. Dual-well 3D vertical seismic profile enabled by distributed acoustic sensing in deepwater Gulf of Mexico[J]. Interpretation, 2015, 3(3): 11-25. doi: 10.1190/INT-2014-0248.1
    [66]
    Lecerf D, Hodges E, Lu S, et al. Imaging primaries and high-order multiples for permanent reservoir monitoring: Application to Jubarte field[J]. The Leading Edge, 2015, 34(7): 824-828.
    [67]
    Han B, Guan H, Yao J, et al. Distributed acoustic sensing with sensitivity-enhanced optical cable[J]. IEEE Sensors Journal, 2021, 21(4): 4644-4651.
    [68]
    Daley T M, Freifeld B M, Ajo-Franklin J, et al. Field testing of fiber-optic distributed acoustic sensing(DAS) for subsurface seismic monitoring[J]. The Leading Edge, 2013, 32: 699-706.
    [69]
    张丽娜, 任亚玲, 林融冰, 等. 分布式光纤声波传感器及其在天然地震学研究中的应用[J]. 地球物理学进展, 2020, 35(1): 65-71. https://www.cnki.com.cn/Article/CJFDTOTAL-DQWJ202001009.htm

    Zhang L N, Ren Y L, Lin R B, et al. Distributed acoustic sensing system and its application for seismological studies[J]. Progress in Geophysics, 2020, 35(1): 65-71(in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-DQWJ202001009.htm
    [70]
    Nayak A, Ajo-Franklin J. Distributed acoustic sensing using dark fiber for array detection of regional earthquakes[J]. Seismological Research Letters, 2021, 92(4): 2441-2452.
    [71]
    Fernandez-Ruiz M R, Soto M A, Williams E F, et al. Distributed acoustic sensing for seismic activity monitoring[J]. Apl Photonics, 2020, 5(3). 030901.
    [72]
    Li Z, Zhan Z. Pushing the limit of earthquake detection with distributed acoustic sensing and template matching: A case study at the Brady geothermal field[J]. Geophysical Journal International, 2018, 215(3): 1583-1593.
    [73]
    王宝善, 曾祥方, 宋政宏, 等. 利用城市通信光缆进行地震观测和地下结构探测[J]. 科学通报, 2021, 66(20): 2590-2595. https://www.cnki.com.cn/Article/CJFDTOTAL-KXTB202120010.htm

    Wang B S, Zeng X F, Song Z H, et al. Seismic observation and subsurface imaging using a urban telecommunication optic-fiber cable[J]. Chinese Science Bulletin, 2021, 66(20): 2590-2595(in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-KXTB202120010.htm
    [74]
    Song Z, Zeng X, Wang B, et al. Distributed acoustic sensing using a large-volume airgun source and internet fiber in an urban area[J]. Seismological Research Letters, 2021, 92(3): 1950-1960.
    [75]
    Song Z, Zeng X, Thurber C H. Surface-wave dispersion spectrum inversion method applied to Love and Rayleigh waves recorded by distributed acoustic sensing[J]. Geophysics, 2021, 86(1): 1-12.
    [76]
    Lancelle C. Distributed acoustic sensing for imaging near-surface geology and monitoring traffic at Garner Valley[D]. Madison: The University of Wisconsin-Madison, 2016.
    [77]
    Spica Z J, Perton M, Martin E R, et al. Urban seismic site characterization by fiber-optic seismology[J]. Journal of Geophysical Research: Solid Earth, 2020, 125(3): 1-14.
    [78]
    宋政宏, 曾祥方, 徐善辉, 等. 分布式光纤声波传感系统在近地表成像中的应用: Ⅰ. 主动源高频面波[J]. 地球物理学报, 2020, 63(2): 532-540. https://www.cnki.com.cn/Article/CJFDTOTAL-DQWX202002015.htm

    Song Z H, Zeng X F, Xu S H et al. Distributed acoustic sensing for imaging shallow structure: Ⅰ. Active source survey[J]. Chinese Journal of Geophysics, 2020, 63(2): 532-540(in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-DQWX202002015.htm
    [79]
    林融冰, 曾祥方, 宋政宏, 等. 分布式光纤声波传感系统在近地表成像中的应用: Ⅱ. 背景噪声成像[J]. 地球物理学报, 2020, 63(4): 1622-1629. https://www.cnki.com.cn/Article/CJFDTOTAL-DQWX202004028.htm

    Lin R B, Zeng X F, Song Z H et al. Distributed acoustic sensing for imaging shallow structure: Ⅱ. Ambient noise tomography[J]. Chinese Journal of Geophysics, 2020, 63(4): 1622-1629(in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-DQWX202004028.htm
    [80]
    Fang G, Li Y E, Zhao Y, et al. Urban near-surface seismic monitoring using distributed acoustic sensing[J]. Geophysical Research Letters, 2020, 47(6): 1-13.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article Views(1286) PDF Downloads(353) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return