Volume 41 Issue 6
Nov.  2022
Turn off MathJax
Article Contents
Li Zekun, Ma Penghui, Peng Jianbing, Yang Ju. Experimental study on the permeability characteristics and structure damage of Malan loess in Heifangtai area[J]. Bulletin of Geological Science and Technology, 2022, 41(6): 200-210. doi: 10.19509/j.cnki.dzkq.2022.0251
Citation: Li Zekun, Ma Penghui, Peng Jianbing, Yang Ju. Experimental study on the permeability characteristics and structure damage of Malan loess in Heifangtai area[J]. Bulletin of Geological Science and Technology, 2022, 41(6): 200-210. doi: 10.19509/j.cnki.dzkq.2022.0251

Experimental study on the permeability characteristics and structure damage of Malan loess in Heifangtai area

doi: 10.19509/j.cnki.dzkq.2022.0251
  • Received Date: 13 Aug 2022
  • Continuous water diversion irrigation has changed the structure of Malan loess, led to the reduction of the shear strength of the soil, and thus the frequent occurrence of landslides in the Heifangtai area, which seriously affected the lives and property safety of local residents. In order to analyze the infiltration process of Malan loess, nuclear magnetic resonance (NMR) and scanning electron microscopy (SEM) tests were respectively carried out to investigate the permeability and structural damage microscopic characteristics for loess at different initial water contents and different dry densities. The obtained results show that the infiltration rate is negatively correlated with the initial moisture content of the soil. The density is negatively correlated, and it will take the lead to a higher water content area. The water content is higher, the increase in the proportion of micropores is smaller, and the less obvious the change in the contact mode between particles; the dry density of the sample is larger, the different pore volumes basically change in the same amount, the contact area is significantly reduced, and more overhead pores are formed, which are connected to each other, leading to good water storage capacity. After infiltration, the original dense structure of the sample is lost, and the particles are severely broken. Some slender particles evolve into nearly round particles or elliptical particles, and the contact mode between particles becomes point-edge contact.The intergranular cementation is damaged and destroyed, and even some particles in the aggregates are separated and fall off, resulting in the loss of soil strength and eventually leading to landslides. The results can provide a basis for the prevention and control of loess landslides.

     

  • loading
  • [1]
    马鹏辉, 彭建兵, 王启耀, 等. 泾阳南塬典型黄土滑坡成因、堆积及运动特征分析[J]. 工程地质学报, 2018, 26(4): 930-938. doi: 10.13544/j.cnki.jeg.2017-380

    Ma P H, Peng J B, Wang Q Y, et al. Formation mechanism, deposits and motion characteristics of the typical loess landslide in south Jingyang platform[J]. Journal of Engineering Geology, 2018, 26(4): 930-938(in Chinese with English abstract). doi: 10.13544/j.cnki.jeg.2017-380
    [2]
    吴玮江, 宿星, 叶伟林, 等. 饱和黄土滑坡形成中的侧压力作用: 以甘肃黑方台为例[J]. 岩土工程学报, 2018, 40(增刊1): 135-140. https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC2018S1023.htm

    Wu W J, Su X, Ye W L, et al. Lateral pressure in formation of saturated loess landslide: Case study of Heifangtai, Gansu Province[J]. Chinese Journal of Geotechnical Engineering, 2018, 40(S1): 135-140(in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC2018S1023.htm
    [3]
    赵纪飞, 黄嘉悦, 侯晓坤, 等. 灌溉诱发的黑方台黄土滑坡泥流机理分析[J]. 灾害学, 2017, 32(4): 60-66. doi: 10.3969/j.issn.1000-811X.2017.04.010

    Zhao J F, Huang J Y, Hou X K, et al. Analysis of a flow-slide in Heifangtai induced by irrigation[J]. Journal of Catastrophology, 2017, 32(4): 60-66(in Chinese with English abstract). doi: 10.3969/j.issn.1000-811X.2017.04.010
    [4]
    Peng D L, Xu Q, Qi X, et al. Study on early recognition of loess landslides based on field investigation[J]. Geohazards and Environment, 2016, 2(2): 35-52. doi: 10.15273/ijge.2016.02.006
    [5]
    任晓虎, 许强, 赵宽耀, 等. 反复入渗对重塑黄土渗透特性的影响[J]. 地质科技通报, 2020, 39(2): 130-138. doi: 10.19509/j.cnki.dzkq.2020.0214

    Ren X H, Xu Q, Zhao K Y, et al. Effect of repeated infiltration on permeability characteristics of remolded loess[J]. Bulletin of Geological Science and Technology, 2020, 39 (2): 130-138(in Chinese with English abstract). doi: 10.19509/j.cnki.dzkq.2020.0214
    [6]
    杨波, 李熠, 周伟, 等. 饱和黄土渗透过程变形与渗透系数关系初探[J]. 广西大学学报: 自然科学版, 2015, 39(2): 325-330. https://www.cnki.com.cn/Article/CJFDTOTAL-GXKZ201502010.htm

    Yang B, Li Y, Zhou W, et al. Experimental studies on relationship between deformation and hydraulic permeability of loess in process of penetration[J]. Journal of Guangxi University: Natural Science Edition, 2015, 39(2): 325-330(in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-GXKZ201502010.htm
    [7]
    Haeri S M, Zamani A, Garakani A A. Collapse potential and permeability of undisturbed and remolded loessial soil samples[C]//Anon. 2nd European conference on unsaturated soils. [S. l. ]: [s. n. ], 2012: 325-330.
    [8]
    李佳, 高广运, 黄雪峰. 非饱和原状黄土边坡浸水试验研究[J]. 岩石力学与工程学报, 2011, 30(5): 1043-1048. https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX201105023.htm

    Li J, Gao G Y, Huang X F. Experimental research on immersion for unsaturated loess[J]. Chinese Journal of Rock Mechanics and Engineering, 2011, 30(5): 1043-1048(in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX201105023.htm
    [9]
    刘德仁, 徐硕昌, 肖洋, 等. 浸水入渗条件下压实黄土水-气运移规律试验研究[J]. 岩土力学, 2021, 42(12): 3260-3270. https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX202112006.htm

    Liu D R, Xu S C, Xiao Y, et al. Experimental study on the law of water-air migration in compacted loess under the condition of immersion infiltration[J]. Rock and Soil Mechanics, 2021, 42(12): 3260-3270(in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX202112006.htm
    [10]
    Wang M, Bai X. Collapse property and microstructure of loess[C]//Anon. Advances in unsaturated soil, seepage and environmental geotechnics. [S. l. ]: ASCE, 2006: 111-118.
    [11]
    罗爱忠, 邵生俊, 许萍. 湿载条件下黄土结构性损伤演化特性研究[J]. 西北农林科技大学学报: 自然科学版, 2012, 40(3): 200-205. https://www.cnki.com.cn/Article/CJFDTOTAL-XBNY201203035.htm

    Luo A Z, Shao S J, Xu P. Research on structural damage developments of loess under stress and moisture[J]. Journal of Northwest A & F University: Natural Science Edition, 2012, 40(3): 200-205(in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-XBNY201203035.htm
    [12]
    王铁行, 郝延周, 汪朝, 等. 干湿循环作用下压实黄土动强度性质试验研究[J]. 岩石力学与工程学报, 2020, 39(6): 1242-1251. https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX202006014.htm

    Wang T X, Hao Y Z, Wang C, et al. Experimental study on dynamic strength properties of compacted loess under wetting-drying cycles[J]. Chinese Journal of Rock Mechanics and Engineering, 2020, 39(6): 1242-1251(in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX202006014.htm
    [13]
    谌文武, 刘伟, 王娟, 等. 渗透剪切作用下黄土的力学特征[J]. 工程科学学报, 2018, 40(5): 639-648. https://www.cnki.com.cn/Article/CJFDTOTAL-BJKD201805015.htm

    Chen W W, Liu W, Wang J, et al. Mechanical characteristics of loess under seepage shear[J]. Chinese Journal of Engineering, 2018, 40(5): 639-648(in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-BJKD201805015.htm
    [14]
    江强强, 刘路路, 焦玉勇, 等. 干湿循环下滑带土强度特性与微观结构试验研究[J]. 岩土力学, 2019, 40(3): 1005-1012, 1022. https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX201903020.htm

    Jiang Q Q, Liu L L, Jiao Y Y, et al. Strength properties and microstructure characteristics of slip zone soil subjected to wetting-drying cycles[J]. Rock and Soil Mechanics, 2019, 40(3): 1005-1012, 1022(in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX201903020.htm
    [15]
    许强, 彭大雷, 亓星, 等. 2015年4·29甘肃黑方台党川2#滑坡基本特征与成因机理研究[J]. 工程地质学报, 2016, 24(2): 167-180. https://www.cnki.com.cn/Article/CJFDTOTAL-GCDZ201602001.htm

    Xu Q, Peng D L, Qi X, et al. Dangchuan 2# landslide of April 29, 2015 in Heifangtai area of Gansu Province: Characteristices and failure mechanism[J]. Journal of Engineering Geology, 2016, 24(2): 167-180(in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-GCDZ201602001.htm
    [16]
    王潇, 杨博, 谷天峰, 等. 甘肃黑方台黄土压缩试验研究[J]. 陕西理工大学学报: 自然科学版, 2018, 34(2): 16-20, 44. https://www.cnki.com.cn/Article/CJFDTOTAL-SXGX201802005.htm

    Wang X, Yang B, Gu T F, et al. Study of loess compression test in Heifangtai, Gansu[J]. Journal of Shaanxi University of Technology: Natural Science Edition, 2018, 34(2): 16-20, 44(in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-SXGX201802005.htm
    [17]
    曹从伍. 甘肃黑方台黄土非饱和入渗特性研究[D]. 成都: 成都理工大学, 2018.

    Cao C W. Study on unsaturated infiltration characteristics of loess in Hei Fangtai, Gansu Province[D]. Chengdu: Chengdu University of Technology, 2018(in Chinese with English abstract).
    [18]
    石兰君, 乔晓英, 曾磊, 等. 甘肃黑方台黄土水分运移规律模拟[J]. 干旱区研究, 2018, 35(4): 813-820. https://www.cnki.com.cn/Article/CJFDTOTAL-GHQJ201804008.htm

    Shi L J, Qiao X Y, Zeng L, et al. Loess moisture migration in Heifangtai of Gansu Province[J]. Arid Zone Research, 2018, 35(4): 813-820(in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-GHQJ201804008.htm
    [19]
    叶万军, 强艳红, 景宏君, 等. 基于核磁共振的不同含水率黄土古土壤冻融循环试验研究[J]. 工程地质学报, 2022, 30(1): 144-153. https://www.cnki.com.cn/Article/CJFDTOTAL-GCDZ202201012.htm

    Ye W J, Qiang Y H, Jing H J, et al. Freeze-thaw cycle experiment of loess paleosol with different water content based on nuclear magnetic resonance[J]. Journal of Engineering Geology, 2020, 30(1): 144-153(in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-GCDZ202201012.htm
    [20]
    雷祥义. 中国黄土的孔隙类型与湿陷性[J]. 中国科学: 化学, 1987(12): 1309-1318. https://www.cnki.com.cn/Article/CJFDTOTAL-JBXK198712008.htm

    Lei X Y. Porosity and collapsible of Loess in China[J]. Scientia Sinica: Chimica, 1987(12): 1309-1318(in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-JBXK198712008.htm
    [21]
    高燕燕. 重塑黄土的渗透特性研究: 以延安新区为例[D]. 西安: 长安大学, 2016.

    Gao Y Y. Experimental study of permeability characteristics of remolded loess: A case study from Yan'an New District[D]. Xi'an: Chang'an University, 2016(in Chinese with English abstract).
    [22]
    吴江鹏. 基于核磁共振的温度与盐溶液对黏土微观结构影响的研究[D]. 广西桂林: 桂林理工大学, 2021.

    Wu J P. A NMR-based study on the effect of temperature and salt solution on microstructure of clay[D]. Guilin, Guangxi: Guilin University of Technology, 2021(in Chinese with English abstract).
    [23]
    何攀, 许强, 刘佳良, 等. 基于核磁共振技术的黄土内部孔径分布对逾渗特性的影响[J]. 科学技术与工程, 2020, 20(30): 12355-12360. https://www.cnki.com.cn/Article/CJFDTOTAL-KXJS202030014.htm

    He P, Xu Q, Liu J L, et al. Effect of pore size distribution on percolation characteristics of loess based on nuclear magnetic resonance technique[J]. Science Technology and Engineering, 2020, 20(30): 12355-12360(in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-KXJS202030014.htm
    [24]
    曾辰, 王全九, 樊军. 初始含水率对土壤垂直线源入渗特征的影响[J]. 农业工程学报, 2010, 26(1): 24-30. https://www.cnki.com.cn/Article/CJFDTOTAL-NYGU201001007.htm

    Zeng C, Wang Q J, Fan J. Effect of initial water content on vertical line-source infiltration characteristics of soil[J]. Transactions of the CSAE, 2010, 26(1): 24-30(in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-NYGU201001007.htm
    [25]
    徐日庆, 徐丽阳, 邓祎文, 等. 基于SEM和IPP测定软黏土接触面积的试验[J]. 浙江大学学报: 工学版, 2015, 49(8): 1417-1425. https://www.cnki.com.cn/Article/CJFDTOTAL-ZDZC201508003.htm

    Xu R Q, Xu L Y, Deng W W, et al. Experimental study on soft clay contact area based on SEM and IPP[J]. Journal of Zhejiang University: Engineering Science, 2015, 49(8): 1417-1425(in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-ZDZC201508003.htm
    [26]
    朱兆波, 王新刚, 朱荣森, 等. 甘肃黑方台黄土滑坡滑带土剪切特性环剪试验研究[J]. 干旱区资源与环境, 2021, 35(5): 144-150. https://www.cnki.com.cn/Article/CJFDTOTAL-GHZH202105021.htm

    Zhu Z B, Wang X G, Zhu R S, et al. Ring shear test on the shear characteristics of sliding zone soil of loess in Heifangtai, Gansu[J]. Journal of Arid Land Resources and Environment, 2021, 35(5): 144-150(in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-GHZH202105021.htm
    [27]
    李姝, 许强, 张立展, 等. 黑方台地区黄土强度弱化的浸水时效特征与机制分析[J]. 岩土力学, 2017, 38(7): 2043-2048, 2058. https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX201707026.htm

    Li S, Xu Q, Zhang L Z, et al. Time effect and mechanism of strength weakening of loess soaked in water in Heifangtai area[J]. Rock and Soil Mechanics, 2017, 38(7): 2043-2048, 2058(in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX201707026.htm
    [28]
    张先伟, 王常明. 一维压缩蠕变前后软土的微观结构变化[J]. 岩土工程学报, 2010, 32(11): 1688-1694. https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC201011011.htm

    Zhang X W, Wang C M. Microstructural change of soft clay before and after one-dimensional compression creep[J]. Chinese Journal of Geotechnical Engineering, 2010, 32(11): 1688-1694(in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC201011011.htm
    [29]
    廖红建, 刘少华, 何玉琪, 等. 黄土孔径和持水特性的分形维数研究[J]. 西北大学学报: 自然科学版, 2022, 52(3): 416-422. https://www.cnki.com.cn/Article/CJFDTOTAL-XBDZ202203006.htm

    Liao H J, Liu S H, He Y Q, et al. Study on fractal dimension of pore size and water retention characteristics of loess[J]. Journal of Northwest University: Natural Science Edition, 2022, 52(3): 416-422(in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-XBDZ202203006.htm
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article Views(282) PDF Downloads(48) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return