Volume 43 Issue 1
Jan.  2024
Turn off MathJax
Article Contents
LANG Rui, ZHAO Min, LI Dong, BAO Qian, CAI Guanxia, CHEN Bo, YANG Haiquan. Composition of the aquatic photosynthetic organism community and its effect on trace elements in karst areas[J]. Bulletin of Geological Science and Technology, 2024, 43(1): 315-325. doi: 10.19509/j.cnki.dzkq.tb20220347
Citation: LANG Rui, ZHAO Min, LI Dong, BAO Qian, CAI Guanxia, CHEN Bo, YANG Haiquan. Composition of the aquatic photosynthetic organism community and its effect on trace elements in karst areas[J]. Bulletin of Geological Science and Technology, 2024, 43(1): 315-325. doi: 10.19509/j.cnki.dzkq.tb20220347

Composition of the aquatic photosynthetic organism community and its effect on trace elements in karst areas

doi: 10.19509/j.cnki.dzkq.tb20220347
More Information
  • Objective

    Trace elements are an important factor affecting the water quality of karst surface waters. Aquatic photosynthetic organisms can absorb and remove harmful elements in the process of photosynthetic metabolism. However, little research has been conducted on the absorption effect and removal potential of trace elements by different aquatic photosynthetic organism community structures.

    Methods

    This study was conducted at the Puding Karst Ecosystem National Observation and Research Station, which constructed a vegetation-soil-groundwater-surface water simulation ecosystem consisting of five types of land use: bare rock land, bare land, cultivated land, grassland and shrub land. Among them, the surface aquatic ecosystem was taken as the research object to carry out research on the removal potential and control mechanism of trace elements by the composition of aquatic photosynthetic organism community structure.

    Results

    Results showed that (1) The surface water chemistry parameters and aquatic photosynthetic biomass were significantly affected by seasonal changes and land use types; (2) The concentrations of Cr, Mn, Co, Ni, Fe and Zn varies significantly in different aquatic photosynthetic ecosystems, and the absorption and removal of Mn, Co, Ni, Fe, and Zn by the planktonic-submerged coexistence system were better than those of a single planktonic system; (3) The formation of a highly dissolved inorganic carbon (DIC) environment in surface water bodies was promoted by the restoration of natural vegetation (shrublands and grasslands) in karst areas, which was conducive to the growth of submerged plants, simultaneously increasing the impact on Mn, Co, Ni, Fe and Zn removal potential in surface water bodies.

    Conclusion

    This understanding will contribute to research on the regulatory mechanism of trace elements in surface water by the structure of aquatic photosynthetic organisms in karst areas.

     

  • 所有作者声明不存在利益冲突。
  • loading
  • [1]
    张军以, 王腊春, 马小雪, 等. 西南岩溶地区地下水污染及防治途径[J]. 水土保持通报, 2014, 34(2): 245-249.

    ZHANG J Y, WANG L C, MA X X, et al. Groundwater pollution in karst areas of Southwest China and its control methods[J]. Bulletin of Soil and Water Conservation, 2014, 34(2): 245-249. (in Chinese with English abstract)
    [2]
    鄢贵权, 丁坚平, 王伍军, 等. 贵州典型岩溶区岩溶地下水污染评价[J]. 中国地质灾害与防治学报, 1999, 10(1): 82-88.

    YAN G Q, DING J P, WANG W J, et al. Karst groundwater pollution assessment in typical karst areas in Guizhou[J]. Chinese Journal of Geological Hazards and Prevention, 1999, 10(1): 82-88. (in Chinese with English abstract)
    [3]
    HARGUINTEGUY C A, CIRELLI A F, PIGNATA M L. Heavy metal accumulation in leaves of aquatic plant Stuckenia filiformis and its relationship with sediment and water in the Suquía River(Argentina)[J]. Microchemical Journal, 2014, 114: 111-118. doi: 10.1016/j.microc.2013.12.010
    [4]
    MD S I, MASARU T. Impacts of pollution on coastal and marine ecosystems including coastal and marine fisheries and approach for management: A review and synthesis[J]. Marine Pollution Bulletin, 2004, 48(7/8): 624-649.
    [5]
    杨伟利. 日本水俣病[J]. 环境, 2006(3): 96-97.

    YANG W L. Minamata disease in Japan[J]. Environment, 2006(3): 96-97. (in Chinese with English abstract)
    [6]
    黄吉厚. 镉对环境的污染及其对策研究[J]. 辽宁教育学院学报, 2000, 17(5): 29-31.

    HUANG J H. Research on the pollution of cadmium to the environment and its countermeasures[J]. Journal of Liaoning Institute of Education, 2000, 17(5): 29-31. (in Chinese with English abstract)
    [7]
    何刚, 耿晨光, 罗睿. 重金属污染的治理及重金属对水生植物的影响[J]. 贵州农业科学, 2008, 36(3): 147-150, 153.

    HE G, GENG C G, LUO R. Treatment of heavy metal pollution and effects of heavy metals on aquatic plants[J]. Guizhou Agricultural Science, 2008, 36(3): 147-150, 153. (in Chinese with English abstract)
    [8]
    常晋娜, 瞿建国. 水体重金属污染的生态效应及生物监测[J]. 四川环境, 2005, 24(4): 29-33.

    CHANG J N, QU J G. Ecological effects and biological monitoring of heavy metal pollution in water[J]. Sichuan Environment, 2005, 24(4): 29-33. (in Chinese with English abstract)
    [9]
    王海东, 方凤满, 谢宏芳. 中国水体重金属污染研究现状与展望[J]. 广东微量元素科学, 2010, 17(1): 14-18.

    WANG H D, FANG F M, XIE H F. Research status and prospect of heavy metal pollution in water in China[J]. Guangdong Science of Trace Elements, 2010, 17(1): 14-18. (in Chinese with English abstract)
    [10]
    黄永杰, 刘登义, 王友保, 等. 八种水生植物对重金属富集能力的比较研究[J]. 生态学杂志, 2006, 25(5): 541-545.

    HUANG Y J, LIU D Y, WANG Y B, et al. A comparative study on the accumulation capacity of heavy metals in eight aquatic plants[J]. Journal of Ecology, 2006, 25(5): 541-545. (in Chinese with English abstract)
    [11]
    MOHAMED Z A. Removal of cadmium and manganese by a non-toxic strain of the freshwater cyanobacterium Gloeothece magna[J]. Water Research, 2001, 35(18): 4405-4409. doi: 10.1016/S0043-1354(01)00160-9
    [12]
    江用彬, 季宏兵. 藻类对重金属污染水体的生物修复[J]. 地理科学进展, 2007, 26(1): 56-67.

    JIANG Y B, JI H B. Bioremediation of heavy metal polluted water by algae[J]. Advances in Geography, 2007, 26(1): 56-67. (in Chinese with English abstract)
    [13]
    陈国梁. 沉水植物对砷的富集特征及机理研究[D]. 杭州: 浙江大学, 2014.

    CHEN G L. Characteristics and mechanism of arsenic accumulation in submerged plants[D]. Hangzhou: Zhejiang University, 2014. (in Chinese with English abstract)
    [14]
    晏丽蓉. 几种沉水植物对底泥中镉、铜、铅、锌修复作用的研究[D]. 杭州: 浙江师范大学, 2013.

    YAN L R. Remediation effect of several submerged plants on cadmium, copper, lead and zinc in sediment[D]. Hangzhou: Zhejiang Normal University, 2013. (in Chinese with English abstract)
    [15]
    SR R A P. Land use and climate change[J]. Science, 2005, 310: 1625-1626. doi: 10.1126/science.1120529
    [16]
    XU S, LANG Y, ZHONG J, et al. Coupled controls of climate, lithology and land use on dissolved trace elements in a karst river system[J]. Journal of Hydrology, 2020, 591: 125328. doi: 10.1016/j.jhydrol.2020.125328
    [17]
    BAO Q, LIU Z, ZHAO M, et al. Primary productivity and seasonal dynamics of planktonic algae species composition in karst surface waters under different land uses[J]. Journal of Hydrology, 2020, 591: 125295. doi: 10.1016/j.jhydrol.2020.125295
    [18]
    陈波, 陈文瑾, 陆苹茹, 等. 基于CCM机制的水生碳泵效应协同富营养化缓解研究进展[J]. 贵州师范大学学报(自然科学版), 2022, 40(2): 19-26.

    CHEN B, CHEN W J, LU P R, et al. Research progress of aquatic carbon pump effect synergistic eutrophication mitigation based on CCM mechanism[J]. Journal of Guizhou Normal University(Natural Science Edition), 2022, 40(2): 19-26. (in Chinese with English abstract)
    [19]
    韩贵琳, 刘丛强. 贵州喀斯特地区河流的研究: 碳酸盐岩溶解控制的水文地球化学特征[J]. 地球科学进展, 2005, 20(4): 394-406.

    HAN G L, LIU C Q. Research on rivers in karst areas of Guizhou: Hydrogeochemical characteristics controlled by carbonate dissolution[J]. Advances in Earth Science, 2005, 20(4): 394-406. (in Chinese with English abstract)
    [20]
    MICHEL M. Global chemical weathering of surficial rocks estimated from river dissolved loads[J]. American Journal of Science, 1987, 287(5): 401-428. doi: 10.2475/ajs.287.5.401
    [21]
    WU W, QU S, NEL W, et al. The impact of natural weathering and mining on heavy metal accumulation in the karst areas of the Pearl River Basin, China[J]. Science of the Total Environment, 2020, 734: 139480. doi: 10.1016/j.scitotenv.2020.139480
    [22]
    JIANG Y, ZHANG C, YUAN D, et al. Impact of land use change on groundwater quality in a typical karst watershed of southwest China: A case study of the Xiaojiang watershed, Yunnan Province[J]. Hydrogeology Journal, 2008, 16(4): 727-735. doi: 10.1007/s10040-007-0259-9
    [23]
    YUE F J, WALDRON S, LI S L, et al. Land use interacts with changes in catchment hydrology to generate chronic nitrate pollution in karst waters and strong seasonality in excess nitrate export[J]. Science of the Total Environment, 2019, 696: 134062. doi: 10.1016/j.scitotenv.2019.134062
    [24]
    魏星宇, 杨永琼, 王敬富, 等. 贵州草海流域下不同土地类型重金属污染空间分布特征及评价[J]. 贵州师范大学学报(自然科学版), 2021, 39(4): 39-45.

    WEI X Y, YANG Y Q, WANG J F, et al. Spatial distribution characteristics and evaluation of heavy metal pollution in different land types in the Caohai watershed of Guizhou[J]. Journal of Guizhou Normal University(Natural Science Edition), 2021, 39(4): 39-45. (in Chinese with English abstract)
    [25]
    COOPER S R. Chesapeake bay watershed historical land use: Impact on water quality and diatom communities[J]. Ecological Applications, 1995, 5(3): 703-723. doi: 10.2307/1941979
    [26]
    ARBUCKLE K E, DOWNING J A. The influence of watershed land use on lake N∶P in a predominantly agricultural landscape[J]. Limnology and Oceanography, 2001, 46(4): 970-975. doi: 10.4319/lo.2001.46.4.0970
    [27]
    NGOYE E, MACHIWA J F. The influence of land-use patterns in the Ruvu River watershed on water quality in the river system[J]. Physics and Chemistry of the Earth, 2004, 29: 15a18.
    [28]
    WANG B, LIU C Q, WANG F, et al. The distributions of autumn picoplankton in relation to environmental factors in the reservoirs along the Wujiang River in Guizhou Province, SW China[J]. Hydrobiologia, 2008, 598(1): 35-45. doi: 10.1007/s10750-007-9138-6
    [29]
    WANG F S, WANG B L, LIU C Q, et al. Changes in nutrient ratios and phytoplankton community structure caused by hydropower development in the Maotiao River, China[J]. Environmental Geochemistry and Health, 2014, 36(3): 595-603. doi: 10.1007/s10653-013-9583-2
    [30]
    QU S, WU W, NEL W, et al. The behavior of metals/metalloids during natural weathering: A systematic study of the mono-lithological watersheds in the upper Pearl River Basin, China[J]. Science of the Total Environment, 2020, 708(C): 134572.
    [31]
    龚杰, 孙紫童, 冯璐, 等. 武汉市东西湖区主要湖泊表层沉积物重金属污染特征与生态风险评价[J]. 地质科技通报, 2021, 40(3): 204-210. doi: 10.19509/j.cnki.dzkq.2021.0313

    GONG J, SUN Z T, FENG L, et al. Characteristics and ecological risk assessment of heavy metal pollution in surface sediments of main lakes in Dongxihu District, Wuhan City[J]. Bulletin of Geological Science and Technology, 2021, 40(3): 204-210. (in Chinese with English abstract) doi: 10.19509/j.cnki.dzkq.2021.0313
    [32]
    夏敏. 必需微量元素的生理功能[J]. 微量元素与健康研究, 2003, 20(3): 41-44.

    XIA M. Physiological functions of essential trace elements[J]. Trace Elements and Health Research, 2003, 20(3): 41-44. (in Chinese with English abstract)
    [33]
    武阳, 刘再华, 于青春, 等. 土地利用变化对喀斯特水体溶解无机碳、总氮和总磷输出的影响: 以贵州普定沙湾模拟试验场为例[J]. 地球与环境, 2022, 50(4): 547-557.

    WU Y, LIU Z H, YU Q C, et al. Effects of land use change on the output of dissolved inorganic carbon, total nitrogen and total phosphorus in karst waters: Taking the Puding Shawan simulation test site in Guizhou as an example[J]. Earth and Environment, 2022, 50(4): 547-557. (in Chinese with English abstract)
    [34]
    XIA F, LIU Z H, ZHAO M, et al. High stability of autochthonous dissolved organic matter in karst aquatic ecosystems: Evidence from fluorescence[J]. Water Research, 2022, 220: 118723. doi: 10.1016/j.watres.2022.118723
    [35]
    LI L, LIU H, LI H X. Distribution and migration of antimony and other trace elements in Akarstic River system, Southwest China[J]. Environmental Science and Pollution Research International, 2018, 25(28): 28061-28074. doi: 10.1007/s11356-018-2837-x
    [36]
    陈宇炜, 陈开宁, 胡耀辉. 浮游植物叶绿素a测定的"热乙醇法"及其测定误差的探讨[J]. 湖泊科学, 2006, 18(5): 550-552.

    CHEN Y W, CHEN K N, HU Y H. "Hot ethanol method" for the determination of phytoplankton chlorophyll a and its measurement error[J]. Lake Science, 2006, 18(5): 550-552. (in Chinese with English abstract)
    [37]
    张澎浪, 孙承军. 地表水体中藻类的生长对pH值及溶解氧含量的影响[J]. 中国环境监测, 2004, 20(4): 49-50.

    ZHANG P L, SUN C J. Effects of algal growth on pH and dissolved oxygen content in surface water[J]. China Environmental Monitoring, 2004, 20(4): 49-50. (in Chinese with English abstract)
    [38]
    杨清心. 富营养水体中沉水植物与浮游藻类相互竞争的研究[J]. 湖泊科学, 1996, 8(增刊1): 17-24.

    YANG Q X. Study on the competition between submerged plants and planktonic algae in eutrophic waters[J]. Journal of Lake Sciences, 1996, 8(S1): 17-24. (in Chinese with English abstract)
    [39]
    LI H, LI Q, LUO X, et al. Responses of the submerged macrophyte Vallisneria natans to a water depth gradient[J]. Science of the Total Environment, 2020, 701(C): 134944.
    [40]
    ZHU J, LIU B, WANG J, et al. Study on the mechanism of allelopathic influence on cyanobacteria and chlorophytes by submerged macrophyte(Myriophyllum spicatum) and its secretion[J]. Aquatic Toxicology, 2010, 98(2): 196-203. doi: 10.1016/j.aquatox.2010.02.011
    [41]
    JONES J I, YOUNG J O, EATON J W, et al. The influence of nutrient loading, dissolved inorganic carbon and higher trophic levels on the interaction between submerged plants and periphyton[J]. Journal of Ecology, 2002, 90(1): 12-24. doi: 10.1046/j.0022-0477.2001.00620.x
    [42]
    秦伯强. 浅水湖泊湖沼学与太湖富营养化控制研究[J]. 湖泊科学, 2020, 32(5): 1229-1243.

    QIN B Q. Limnology of shallow lakes and eutrophication control of Taihu Lake[J]. Journal of Lake Sciences, 2020, 32(5): 1229-1243. (in Chinese with English abstract)
    [43]
    李梦. 巢湖西半湖浮游藻类群落及体内微量元素的研究[D]. 合肥: 合肥工业大学, 2015.

    LI M. Study on the phytoplankton community and trace elements in the west half of Chaohu Lake[D]. Hefei: Hefei University of Technology, 2015. (in Chinese with English abstract)
    [44]
    鲍乾. 喀斯特地表水水生光合作用的碳限制及其环境效应: 以普定沙湾模拟试验场为例[D]. 贵阳: 中国科学院地球化学研究所, 2021.

    BAO Q. Carbon limitation of aquatic photosynthesis in karst surface waters and its environmental effects: A case study of Puding Shawan simulation test site[D]. Guiyang: Institute of Geochemistry, Chinese Academy of Sciences, 2021. (in Chinese with English abstract)
    [45]
    ERIK J, MARTIN S, MORTEN S, et al. The structuring role of submerged macrophytes in lakes[M]. New York: Springer, 1998.
    [46]
    SCHEFFER M, HOSPER S H, MEIJER M L, et al. Alternative equilibria in shallow lakes[J]. Trends in Ecology & Evolution, 1993, 8(8): 275-279.
    [47]
    BORNETTE G, PUIJALON S. Response of aquatic plants to abiotic factors: A review[J]. Aquatic Sciences, 2011, 73(1): 1-14. doi: 10.1007/s00027-010-0162-7
    [48]
    熊飞, 刘红艳, 董元火, 等. 抚仙湖轮藻植物的时空格局[J]. 江汉大学学报(自然科学版), 2011, 39(3): 102-107.

    XIONG F, LIU H Y, DONG Y H, et al. The spatiotemporal pattern of charophytes in Fuxian Lake[J]. Journal of Jianghan University(Natural Science Edition), 2011, 39(3): 102-107. (in Chinese with English abstract)
    [49]
    李栋, 赵敏, 刘再华, 等. 普定岩溶水-碳循环模拟试验场水体双碳同位素特征(δ13C-Δ14C)与碳足迹[J]. 地学前缘, 2022, 29(3): 155-166.

    LI D, ZHAO M, LIU Z H, et al. Double carbon isotopic characteristics(δ13C-Δ14C) and carbon footprint of water in Puding karst water-carbon cycle simulation test site[J]. Earth Science Frontier, 2022, 29(3): 155-166. (in Chinese with English abstract)
    [50]
    王和云, 于丹, 倪乐意. 浅析轮藻植物与水体富营养化的关系[J]. 长江流域资源与环境, 2014, 23(5): 693-699.

    WANG H Y, YU D, NI L Y. Analysis on the relationship between charophytes and water eutrophication[J]. Resources and Environment in the Yangtze River Basin, 2014, 23(5): 693-699. (in Chinese with English abstract)
    [51]
    王爱丽, 王芳, 商书波, 等. 沉水植物菹草对含铬废水的修复实验设计[J]. 实验技术与管理, 2018, 35(12): 62-64.

    WANG A L, WANG F, SHANG S B, et al. Experimental design of the remediation of chromium-containing wastewater by the submerged plant S. japonica[J]. Experimental Technology and Management, 2018, 35(12): 62-64. (in Chinese with English abstract)
    [52]
    张饮江, 刘晓培, 金晶, 等. 沉水植物对水体净化的研究进展[J]. 科技导报, 2012, 30(27): 72-79.

    ZHANG Y J, LIU X P, JIN J, et al. Research progress on water purification by submerged plants[J]. Science and Technology Review, 2012, 30(27): 72-79. (in Chinese with English abstract)
    [53]
    AYSEL S, EMIRE E, FATIH G, et al. Removal of cadmium by Myriophyllum heterophyllum Michx. and Potamogeton crispus L. and its effect on pigments and total phenolic compounds[J]. Archives of Environmental Contamination and Toxicology, 2008, 54(4): 612-618. doi: 10.1007/s00244-007-9070-9
    [54]
    BUNLUESIN S, POKETHITIYOOK P, LANZA G R, et al. Influences of cadmium and zinc interaction and humic acid on metal accumulation in ceratophyllum demersum[J]. Water, Air, and Soil Pollution, 2007, 180(1/4): 225-235.
    [55]
    周婕, 曾诚. 水生植物对湖泊生态系统的影响[J]. 人民长江, 2008, 39(6): 88-91.

    ZHOU J, ZENG C. Effects of aquatic plants on lake ecosystems[J]. People's Yangtze River, 2008, 39(6): 88-91. (in Chinese with English abstract)
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article Views(66) PDF Downloads(8) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return