Volume 43 Issue 1
Jan.  2024
Turn off MathJax
Article Contents
LI Yingbin, ZHANG Wei, QIU Chongtao. Application of comprehensive geophysics in uranium exploration in the Hetaoba area of Duolun County, Inner Mongolia[J]. Bulletin of Geological Science and Technology, 2024, 43(1): 352-359. doi: 10.19509/j.cnki.dzkq.tb20230281
Citation: LI Yingbin, ZHANG Wei, QIU Chongtao. Application of comprehensive geophysics in uranium exploration in the Hetaoba area of Duolun County, Inner Mongolia[J]. Bulletin of Geological Science and Technology, 2024, 43(1): 352-359. doi: 10.19509/j.cnki.dzkq.tb20230281

Application of comprehensive geophysics in uranium exploration in the Hetaoba area of Duolun County, Inner Mongolia

doi: 10.19509/j.cnki.dzkq.tb20230281
More Information
  • Corresponding author: LI Yingbin, E-mail: 799982826@qq.com
  • Received Date: 22 May 2023
  • Accepted Date: 28 Sep 2023
  • Rev Recd Date: 27 Sep 2023
  • Objective

    The Hetaoba area in Inner Mongolia has superior uranium metallogenic conditions.Grea tore-prospecting results have been achieved in the eastern part of the study area.However, breakthrough has not been made in the western area. Uranium mineralization is significantly controlled by faults and fractured zones. To identify the distributions of fault framework, structural fracture and alteration zones, and further to infer the favorable metallogenesis areas, geophysical data are provided to explore the uranium metallogenic potential.

    Methods

    Through the comprehensive applications of three geophysical methods, including audiomagnetotelluric surveys, soil radon measurements, and ground high-precision magnetic measurements, soil radon anomalies are delineated in the study area. The northwest fault F13 shows a northeast- and northwest-trending with a Chinese word "Tian" grid shape, while the southeast fault F12 presents a northeast-trending grid shape. The faults of F13 and F12 present nearly north-south and northwest trendings in the pinched zones.There are six structural alterated and fractured zones to be inferred.

    Results

    Based on the characteristics of uranium mineralization, it is inferred that the structural alteration and fracture zones of S1, S2, S3 and S4 are located at the intersection and pinched zone of faults, with a large scale. Multiple soil radon anomalies are distributed with an anomaly amplitude up to 35 000 Bq/m3, which are the favorable areas for metallogenesis.

    Conclusion

    After verification of the drilling results, the structural alteration, fracture zones and thick uranium ore bodies are discovered in the deep of borehole ZKH24. Many industrial uranium ore holes are discovered in the S2 structural alteration zone. Borehole ZKH7-1 has good ore findings, confirming the origin place of the uranium ore. The study indicates that the comprehensive application of the three geophysical methods has effective results in uranium ore exploration and can be promoted to uranium ore prospecting.

     

  • The authors declare that no competing interests exist.
  • loading
  • [1]
    王国建. 沽源-红山子多金属成矿带燕山成矿阶段主要控矿因素研究新进展和存在的主要问题[J]. 世界有色金属, 2021(15): 59-60.

    WANG G J. New progress and existing problems in the study of main ore controlling factors in the Yanshanian metallogenic stage of Guyuan-Hongshanzi polymetallic metallogenic belt[J]. World Nonferrous Metals, 2021(15): 59-60. (in Chinese with English abstract)
    [2]
    薛伟, 彭云彪, 李小伟, 等. 沽源-红山子铀成矿带核桃坝铀矿床矿相学和成矿年代学研究[J]. 岩石学报, 2019, 35(4): 1085-1094.

    XUE W, PENG Y B, LI X W, et al. Study on the mineragraphy and geochronology of Hetaoba uranium deposit in Guyuan-Hongshanzi uranium metallogenic belt[J]. Acta Petrologica Sinica, 2019, 35(4): 1085-1094. (in Chinese with English abstract)
    [3]
    刘小刚, 孙国胜. 多伦火山盆地核桃坝地区控矿因素及找矿方向[J]. 世界有色金属, 2018(1): 92-93.

    LIU X G, SUN G S. Ore controlling factors and prospecting direction in the walnut dam area of the Duolun volcanic basin[J]. World Nonferrous Metals, 2018(1): 92-93. (in Chinese with English abstract)
    [4]
    蒋孝君, 剡彭兵, 薛伟, 等. 内蒙古核桃坝地区流纹斑岩的地球化学特征及与铀富集的关系[J]. 现代地质, 2017, 31(2): 225-233.

    JIANG X J, YAN P B, XUE W, et al. Geochemical characteristics of rhyolite porphyry and relationship between the rock and enriched uranium in Hetaoba, Inner Mongolia[J]. Geoscience, 2017, 31(2): 225-233. (in Chinese with English abstract)
    [5]
    蒋孝君. 内蒙古核桃坝地区铅锌与铀矿的期次关系探讨[J]. 地质论评, 2021, 67(1): 97-98.

    JIANG X J. Discussion on the relationship between lead zinc and uranium deposits in Hetaoba area, Inner Mongolia[J]. Geological Review, 2021, 67(1): 97-98. (in Chinese with English abstract)
    [6]
    YANG X L, LI B, PENG C S, et al. Application of a wide-field electromagnetic method to shale gas exploration in South China[J]. Applied Geophysics, 2017, 14(3): 441-448. doi: 10.1007/s11770-017-0633-x
    [7]
    赵岩岩, 吴昌雄, 石文杰, 等. 鄂东南矿集区铜绿山-铜山铜铁金矿床三维地质建模与深部预测[J]. 地质科技通报, 2023: 42(1): 112-125. doi: 10.19509/j.cnki.dzkq.2022.0095

    ZHAO Y Y, WU C X, SHI W J, et al. Three-dimensional (3D) geological modeling and deep mineral targeting of the Tonglüshan-Tongshan Cu-Fe-Au deposit in southeastern Hubei Province[J]. Bulletin of Geological Science and Technology, 2023: 42(1): 112-125. (in Chinese with English abstract) doi: 10.19509/j.cnki.dzkq.2022.0095
    [8]
    周立国, 王延浩, 张单乐, 等. 日龙沟锡-多金属成矿区综合物探找矿方法应用研究[J]. 地球物理学进展, 2009, 24(6): 2255-2260.

    ZHOU L G, WANG Y H, ZHANG D L, et al. A study on application of integrated geophysical prospecting methods to the Rilonggou Sn-polymetallic metallogenic area[J]. Progress in Geophysics, 2009, 24(6): 2255-2260. (in Chinese with English abstract)
    [9]
    陈后扬, 李帝铨, 凌帆, 等. 朱溪钨铜矿的广域电磁法深部探测[J]. 中国有色金属学报, 2022, 32(10): 3227-3243.

    CHEN H Y, LI D S, LING F, et al. Deep exploration of wide field electromagnetic method in Zhuxi W-Cu deposit[J]. The Chinese Journal of Nonferrous Metals, 2022, 32(10): 3227-3243. (in Chinese with English abstract)
    [10]
    路拓, 刘盛东, 王勃, 等. 综合矿井物探技术在含水断层探测中的应用[J]. 地球物理学进展, 2015, 30(3): 1371-1375.

    LU T, LIU S D, WANG B, et al. Application of integrated mining geophysical method in detection of water-bearing faults[J]. Progress in Geophysics, 2015, 30(3): 1371-1375. (in Chinese with English abstract)
    [11]
    赵东东, 张宝松, 宗全兵, 等. 综合物探方法在地铁孤石探测中的应用研究[J]. 地球物理学进展, 2022, 37(3): 1360-1370.

    ZHAO D D, ZHANG B S, ZONG Q B, et al. Application of integrated geophysical method to boulder in subway shield zone[J]. Progress in Geophysics, 2022, 37(3): 1360-1370. (in Chinese with English abstract)
    [12]
    高才坤, 肖长安, 杜爱明, 等. 综合物探方法在滇池补水工程中的应用[J]. 地球物理学进展, 2011, 26(4): 1440-1447.

    GAO C K, XIAO C A, DU A M, et al. Application of integrated geophysical methods on Dianchi water supplement project[J]. Progress in Geophysics, 2011, 26(4): 1440-1447. (in Chinese with English abstract)
    [13]
    黄毓铭, 张晓峰, 谢尚平, 等. 综合物探方法在南宁地铁溶洞探测中的应用[J]. 地球物理学进展, 2017, 32(3): 1352-1359.

    HUANG Y M, ZHANG X F, XIE S P, et al. Application of integrated geophysical method to karst cave exploration of metro engineering in Nanning[J]. Progress in Geophysics, 2017, 32 (3): 1352-1359. (in Chinese with English abstract)
    [14]
    李丛, 张平, 代磊, 等. 综合物探在中深层地热勘查的应用研究[J]. 地球物理学进展, 2021, 36(2): 611-617.

    LI C, ZHANG P, DAI L, et al. Research on the application of comprehensive geophysical prospecting in middle-deep geothermal exploration[J]. Progress in Geophysics, 2021, 36(2): 611-617. (in Chinese with English abstract)
    [15]
    林华颖, 裴鹏, 邹行, 等. 贵州省毕节市米底河地热特征及形成机理[J]. 地质科技通报, 2023, 42(3): 281-288. doi: 10.19509/j.cnki.dzkq.tb20210675

    LIN H Y, PEI P, ZOU H, et al. Geothermal characteristics and formation mechanism of the Medi River in Bijie City, Guizhou Province[J]. Bulletin of Geological Science and Technology, 2023, 42(3): 281-288. (in Chinese with English abstract) doi: 10.19509/j.cnki.dzkq.tb20210675
    [16]
    ZHANG B M, DAI S K, JIANG Q Y, et al. Time-domain denoising of time-frequency electromagnetic data[J]. Applied Geophysics, 2019, 16(3): 378-393. doi: 10.1007/s11770-019-0772-3
    [17]
    LI J J, YAN J B, HUANG X Y, et al. Precision of meshfree methods and application to forword modeling of two-dimensional electromagnetic sources[J]. Applied Geophysics, 2015, 12(4): 503-515. doi: 10.1007/s11770-015-0511-3
    [18]
    LIN C H, TAN H D, DONG T, et al. Three-demensional conjugate gradients inversion of magnetotelluric sounding data[J]. Applied Geophysics, 2008, 5(4): 314-321. doi: 10.1007/s11770-008-0043-1
    [19]
    JIANG F, WU J S, WANG J L. Study of joint inversion of gravity and magnetic data for two-layer model[J]. Applied Geophysics, 2008, 5(4): 331-339. doi: 10.1007/s11770-008-0042-2
    [20]
    WANG K P, TAN H D, WANG T. 2D joint inversion of CSAMT and magnetic data based on cross-gradient theory[J]. Applied Geophysics, 2017, 14(2): 279-290. doi: 10.1007/s11770-017-0615-z
    [21]
    XIONG J, ZHANG T. Multiobjective particle swarm inversion algorithm for two-dimensional magnetic data[J]. Applied Geophysics, 2015, 12(2): 127-136. doi: 10.1007/s11770-015-0486-0
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article Views(286) PDF Downloads(43) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return