Volume 39 Issue 6
Nov.  2020
Turn off MathJax
Article Contents
Zhang Junshuai, Wang Bingguo, Liu Tianqi. Fuzzy comprehensive evaluation and its validation for shallow groundwater vulnerability in Jianghan Plain[J]. Bulletin of Geological Science and Technology, 2020, 39(6): 154-164. doi: 10.19509/j.cnki.dzkq.2020.0617
Citation: Zhang Junshuai, Wang Bingguo, Liu Tianqi. Fuzzy comprehensive evaluation and its validation for shallow groundwater vulnerability in Jianghan Plain[J]. Bulletin of Geological Science and Technology, 2020, 39(6): 154-164. doi: 10.19509/j.cnki.dzkq.2020.0617

Fuzzy comprehensive evaluation and its validation for shallow groundwater vulnerability in Jianghan Plain

doi: 10.19509/j.cnki.dzkq.2020.0617
  • Received Date: 14 Jan 2020
  • Taking shallow groundwater of shayang-jiukou area in Jianghan plain as the research object to evaluate shallow groundwater vulnerability of Jianghan plain, is directed against the shortcomings of the traditional DRASTIC model, suchas strong relevance and weight subjectivity of evaluation indexes, discontinuity of the scoring values, and absence of measured data verification to the evaluation result. Considering the reality in the study area, a fuzzy comprehensive evaluation model is established on the basis of the improved DRASTIC model, and the accuracy and reliability of the model are verified by key pollution factors such as Cl-, NO3- and NH4+ in shallow groundwater. In this model, a new quantitative evaluation index system was built to make the evaluation indexes more objective and reasonable, which the impact of the vadose zone media, aquifer media and soil media were replaced by the thickness of cohesive soil in vadose zone, thickness of aquifer and soil saturated hydraulic conductivity respectively. The three-scale AHP method was adopted to determine the weight of each index, which reduced the subjectivity of the index weights from the traditional DRASTIC model. Based on the improved DRASTIC model, a fuzzy mathematics method was introduced, and the fixed scoring values of the indexes were replaced by the subordinating degree function to overcome the discontinuity of traditional DRASTIC model for using the quota scoring. The fuzzy comprehensive evaluation result showed that vulnerability evaluation of shallow groundwater in the study area is poor or comparatively poor on the whole, accounting for 76.53% of the study area. This research can provide method reference for shallow groundwater vulnerability evaluation in plain regions and scientific evidence for the prevention and control of shallow groundwater pollution in Jianghan Plain.

     

  • loading
  • [1]
    Aller L, Bennet T, Lehr J, et al.DRASTIC: A standardized system for evaluating groundwater pollution potential using hydrogeologic setting[R].U.S.EPA Report, 1987.
    [2]
    乔萌萌, 杨洁, 周芮, 等.基于DRASTIC模型的地下水脆弱性研究综述[J].苏州科技大学学报:工程技术版, 2017, 30(2):3844. http://www.cnki.com.cn/Article/CJFDTOTAL-SZCJ201702007.htm
    [3]
    鄂建, 孙爱荣, 钟新永.DRASTIC模型的缺陷与改进方法探讨[J].水文地质工程地质, 2010, 37(1):103-107. http://www.cnki.com.cn/Article/CJFDTotal-SWDG201001023.htm
    [4]
    杨贵芳, 姜月华, 李云.基于DRASTIC模型的城市地下水脆弱性评价综述[J].地下水, 2012, 34(1):5-8. http://www.cnki.com.cn/Article/CJFDTotal-DXSU201201003.htm
    [5]
    张川, 唐蕴, 唐克旺.呼伦贝尔高平原地区浅层地下水脆弱性评价[J].水资源保护, 2016, 32(3):19-32. http://www.cnki.com.cn/Article/CJFDTotal-SZYB201603004.htm
    [6]
    Zhou H C, Wan G L, Yang Q.A Multi-objective Fuzzy pattern Recognition Model for Assessing Groundwater Vulnerability Based on the DRASTIC System[J].Hydrological Sci., 1999, 44(4): 611-618. doi: 10.1080/02626669909492256
    [7]
    袁建飞, 郭清海.湖北省钟祥市汉江河谷平原区浅层孔隙水的脆弱性评价[J].地质科技情报, 2009, 28(4):113-116. http://d.wanfangdata.com.cn/Periodical/dzkjqb200904020
    [8]
    Balal O.Groundwater vulnerability assessment with using GIS in Hamadan-Bahar plain, Iran[J].Applied Water Science, 2019, 9(8):1-13. doi: 10.1007/s13201-019-1082-x
    [9]
    贾晓青, 刘建, 罗明明, 等.基于改进的DRASTIC模型对香溪河典型岩溶流域地下水脆弱性评价[J].地质科技情报, 2019, 38(4):256-261. http://www.cnki.com.cn/Article/CJFDTotal-DZKQ201904027.htm
    [10]
    Mohammadi K, Niknam R, Majd V J.Aquifer vulnerability assessment using GIS and fuzzy system:A case study in Tehran-Karaj aquifer, Iran[J].Environmental Geology, 2009, 58(2):437-446. doi: 10.1007/s00254-008-1514-7
    [11]
    Hallaq A H A, Elaish B S A.Assessment of aquifer vulnerability to contamination in Khanyounis Governorate, gaza strip—Palestine, Using the DRASTIC model within GIS environment[J].Arabian Journal of Geosciences, 2011, 5(4):1-15.
    [12]
    Edet A.An aquifer vulnerability assessment of the Benin Formation aquifer, Calabar, Southeastern Nigeria, Using DRASTIC and GIS approach[J].Environmental Earth Sciences, 2013, 71(4):1747-1765. doi: 10.1007/s12665-013-2581-y
    [13]
    Abdullah T O, Ali S S, Al-Ansari N A.Groundwater assessment of Halabja Saidsadiq Basin, Kurdistan region, NE of Iraq using vulnerability mapping[J].Arabian Journal of Geosciences, 2016, 9(3):1-16. http://smartsearch.nstl.gov.cn/paper_detail.html?id=8cbd5651e3139246e022fe7d18089e21
    [14]
    Neshat A, Pradhan B, Pirasten S, et al.Estimating groundwater vulnerability to pollution using a modified DRASTIC model in the Kerman agricultural area, Iran[J].Environmental Earth Sciences, 2014, 71(7):3119-3131. doi: 10.1007/s12665-013-2690-7
    [15]
    马腾, 邓亚敏, 梁杏, 等.旧口-沔阳段地球关键带1: 5万环境地质调查报告[R].武汉: 中国地质大学(武汉)环境学院, 2018.
    [16]
    童晨, 冯予诚, 尚睿华, 等.江汉平原地下水中铁的分布特征及其成因研究[J].水文地质工程地质, 2019, 42(7):197-205. http://www.cnki.com.cn/Article/CJFDTotal-FJKS201907031.htm
    [17]
    蔡玲, 胡成, 陈植华, 等.江汉平原东北部地区高铁锰地下水成因与分布规律[J].环境科学与技术, 2019, 46(4):18-25. http://www.cnki.com.cn/Article/CJFDTotal-SWDG201904004.htm
    [18]
    Ramos Leal J A, Noyola Medrano C, Tapia Silva F O, et al.Assessing the inconsistency between groundwater vulnerability and groundwater quality: The case of Chapala Marsh, Mexico[J].Hydrogeology Journal, 2012, 20(3):591-603. doi: 10.1007/s10040-011-0823-1
    [19]
    张泰丽, 冯小铭, 刘红樱, 等.基于DRASTIC的丽水市地下水防污性能评价[J].地球与环境, 2012, 40(1):115-120. http://d.wanfangdata.com.cn/Periodical/dzdqhx201201017
    [20]
    付素蓉, 王焰新, 蔡鹤生, 等.城市地下水污染敏感性分析[J].地球科学, 2000, 25(5):482-486. http://www.cnki.com.cn/Article/CJFDTotal-DQKX200005007.htm
    [21]
    苏贺, 康卫东, 曹珍珍, 等.潜水含水层水动力弥散实验研究[J].水土保持通报, 2014, 34(2):84-85. http://www.cnki.com.cn/article/cjfdtotal-sttb201402018.htm
    [22]
    刘长礼, 张云, 叶浩, 等.包气带黏性土层的防污性能实验研究及其对地下水脆弱性评价的影响[J].地球学报, 2006, 27(4):349-354. http://d.wanfangdata.com.cn/periodical/dqxb200604010
    [23]
    雷静, 张思聪.唐山市平原区地下水脆弱性评价研究[J].环境科学学报, 2003, 23(1):95-99. http://d.wanfangdata.com.cn/periodical/hjkxxb200301019
    [24]
    王松, 管后春.基于MAPGIS和AHP的DRASTIC模型的合肥市地下水防污性能评价[J].西部资源, 2018(6):92-96. http://www.cnki.com.cn/Article/CJFDTotal-XBZY201806036.htm
    [25]
    周惠成, 王国利.基于DRASTIC模型含水层易污染性模糊综合评价[J].大连理工大学报, 2001, 41(3):213-215. http://www.cnki.com.cn/Article/CJFDTotal-DLLG200102025.htm
    [26]
    许小薇, 马魁红, 邹上.基于AHP的模糊综合评价模型在地下水脆弱性评价中的应用研究[J].地下水, 2018, 40(5):1-4. http://www.cnki.com.cn/Article/CJFDTotal-DXSU201805001.htm
    [27]
    左军.层次分析法中判断矩阵的间接给出法[J].系统工程, 1988, 10(6):56-63. http://www.cnki.com.cn/Article/CJFD1988-GCXT198806013.htm
    [28]
    孟宪萌, 束龙仓, 卢耀如.基于熵权的改进DRASTIC模型在地下水脆弱性评价中的应用[J].水利学报, 2007, 38(1):94-99. http://www.cnki.com.cn/Article/CJFDTotal-SLXB200701013.htm
    [29]
    李绍飞, 孙书洪, 王勇.基于DRASTIC的含水层脆弱性模糊评价方法与应用[J].水文地质工程地质, 2008, 35(3):113-117. http://www.cnki.com.cn/Article/CJFDTotal-SWDG200803025.htm
    [30]
    Seyedeh M J, Mohammad R N.Developing a fuzzy optimization model for groundwater risk assessment based on improved DRASTIC method[J].Environmental Earth Sciences, 2019, 78(109):1-16.
    [31]
    廖启鹏, 陈茹, 黄士真.基于模糊综合评判与GIS方法的废弃矿区景观评价[J].地质科技情报, 2019, 38(6):242-250. http://www.cnki.com.cn/Article/CJFDTotal-DZKQ201906029.htm
    [32]
    郝静, 张永祥, 丁飞, 等.改进的DRASTIC模型在地下水易污染性模糊评价中的应用[J].水文地质工程地质, 2013, 40(5):35-39. http://www.cnki.com.cn/Article/CJFDTotal-SWDG201305010.htm
    [33]
    Ghazavi R, Ebrahimi Z.Assessing groundwater vulnerability to contamination in an arid environment using DRASTIC and GOD models[J].International Journal of Environmental Science and Technology, 2015, 12(9):2909-2918. doi: 10.1007/s13762-015-0813-2
    [34]
    Shirazi S M, Imran H M, Akib S, et al.Groundwater vulnerability assessment in the Melaka State of Malaysia using DRASTIC and GIS techniques[J].Environmental Earth Sciences, 2013, 70:2293-2304. doi: 10.1007/s12665-013-2360-9
    [35]
    何军, 彭轲, 曾敏.江汉平原东北部浅层高铁锰地下水环境特征[J].华南地质与矿产, 2016, 32(3):258-264. http://www.cnki.com.cn/Article/CJFDTotal-HNKC201603008.htm
    [36]
    邬建勋, 余倩, 蒋庆肯, 等.江汉平原高砷地下水与含水层沉积物的地球化学特征[J].地质科技情报, 2019, 38(1):250-257. http://www.cnki.com.cn/Article/CJFDTotal-DZKQ201901028.htm
    [37]
    於昊天, 马腾, 邓娅敏, 等.江汉平原东部地区浅层地下水化学特征[J].地球科学, 2017, 42(5):686-692. http://www.cnki.com.cn/Article/CJFDTotal-DQKX201705003.htm
    [38]
    张婷, 陈世俭, 傅娇凤.四湖地区地下水"三氮"含量及时空分布特征分析[J].长江流域资源与环境, 2014, 23(9):1296-1299. http://www.cnki.com.cn/Article/CJFDTotal-CJLY201409016.htm
    [39]
    沈帅, 马腾, 杜尧, 等.江汉平原东部浅层地下水氮的空间分布特征[J].环境科学与技术, 2018, 41(2):47-56. http://www.cnki.com.cn/Article/CJFDTotal-FJKS201802008.htm
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article Views(451) PDF Downloads(4181) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return