Citation: | Wen Zhang, Li Xu. Semi-analytical solution for radial solute transport model with skin effect[J]. Bulletin of Geological Science and Technology, 2020, 39(1): 60-66. doi: 10.19509/j.cnki.dzkq.2020.0107 |
[1] |
朱学愚, 冯绍元.用改进的特征有限元法确定抽水(注水)时的弥散参数[J].水动力学研究与进展:A辑, 1992, 7(2):206-211. http://www.cnki.com.cn/Article/CJFDTotal-SDLJ199202011.htm
|
[2] |
任理.地下水溶质径向弥散问题的混合拉普拉斯变换有限单元解[J].水动力学研究与进展:A辑, 1994, 9(1):37-43. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=QK199400399541
|
[3] |
Moench A, Ogata A.A numerical inversion of the Laplace transform solution to radial dispersion in a porous medium[J].Water Resources Research, 1981, 17(1):250-252. doi: 10.1029/WR017i001p00250
|
[4] |
Chen J S, Liu C W, Liao C M.A novel analytical power series solution for solute transport in a radially convergent flow field[J].Journal of Hydrology, 2002, 266(1/2):120-138. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=e615311224c8a049b05d550e8d1790cb
|
[5] |
Wang Q R, Zhan H B.Radial reactive solute transport in an aquifer-aquitard system[J].Advance in Water Resources, 2013, 61:51-61. doi: 10.1016/j.advwatres.2013.08.013
|
[6] |
张效先.不动水体存在时求解径向弥散问题的一种有限单位法及其应用[J].水利学报, 1988(1):40-46. doi: 10.3321/j.issn:0559-9350.1988.01.005
|
[7] |
Hoopes J A, Harleman D R F.Dispersion in radial flow from a recharge well[J].Journal of Geophysical Research, 1967, 72(14):3595-3607. doi: 10.1029/JZ072i014p03595
|
[8] |
高光耀, 冯绍元, 霍再林, 等.考虑弥散尺度效应的溶质径向运移动力学模型及半解析解[J].水动力学研究与进展, 2009, 24(2):156-163. http://d.old.wanfangdata.com.cn/Periodical/sdlxyjyjz200902005
|
[9] |
Sharifi Haddad A, Hassanzadeh H, Abedi J, et al.Application of tracer injection tests to characterize rock matrix block size distribution and dispersivity in fractured aquifers[J].Journal of Hydrology, 2014, 510:504-512. doi: 10.1016/j.jhydrol.2014.01.008
|
[10] |
Wang Q R, Shi W G, Zhan H B, et al.Models of single-well push-pull test with mixing effect in the wellbore[J].Water Resources Research, 2018, 54:10155-10171. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=47c425260a9df4fd1daa19af6d1e81c0
|
[11] |
de Hoog F R, Knight J, Stokes A.An improved method for numerical inversion of Laplace transforms.[J].SIAM Journal on Scientific and Statistical Computing, 1982, 3(3):357-366. doi: 10.1137/0903022
|
[12] |
Stehfest H.Algorithm 368 numerical inversion of Laplace transform[J].Communication of ACM, 1970, 13(1):47-49. doi: 10.1145-355598.362787/
|
[13] |
Li N, Wen Z, Zhan H B, et al.The single-well test dilemma:The skin effect and variable-rate pumping perspective[J].Hydrogeology Journal, 2018, 26:2521-2529. doi: 10.1007/s10040-018-1852-9
|
[14] |
Li X, Wen Z, Qi Zhu, et al.Numerical simulation of single-well push-pull tests in a radial two-zone confined aquifer[J].Hydrogeology Journal, 2019, 27(7):2645-2658. doi: 10.1007/s10040-019-02014-y
|
[15] |
Yeh H D, Chen Y J.Determination of skin and aquifer parameters for a slug test with wellbore-skin effect[J].Journal of Hydrology:Amsterdam, 2007, 342(3/4):283-294. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=028b083ad0dfd7c969be981a00e5b98d
|
[16] |
Malama B, Kuhlman K L, Barrash W, et al.Modeling slug tests in unconfined aquifers taking into account water table kinematics, wellbore skin and inertial effects[J].Journal of Hydrology, 2011, 408(1/2):113-126. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=d2dbcfbbdc25e901d689de8575a5a50e
|
[17] |
Wen Z, Zhan H B, Huang, G H, et al.Constant-head test in a leaky aquifer with a finite-thickness skin[J].Journal of Hydrology, 2011, 399:326-334. doi: 10.1016/j.jhydrol.2011.01.010
|
[18] |
Feng Q, Zhan H B.Constant-head test at a partially penetrating well in an aquifer-aquitard system[J].Journal of Hydrology, 2019, 569:495-505. doi: 10.1016/j.jhydrol.2018.12.018
|
[19] |
Chen Y J, Yeh H D, Chang K J.A mathematical solution and analysis of contaminant transport in a radial two-zone confined aquifer[J].Journal of Contaminant Hydrology, 2012, 139(2):75-82. https://pubmed.ncbi.nlm.nih.gov/22814588/
|
[20] |
Hsieh P F, Yeh H D.Semi-analytical and approximate solutions for contaminant transport from an injection well in a two-zone confined aquifer system[J].Journal of Hydrology, 2014, 519:1171-1176. doi: 10.1016/j.jhydrol.2014.08.046
|