Volume 39 Issue 1
Jan.  2020
Turn off MathJax
Article Contents
Cai Zhongxian, Yu Congling, Yang Haijun, Zhang Haizu, Yuan Yuchun. Distribution and differential entrapment mechanism of the oil-water interface within Ordovican in the west part of Lungu buried hill oil field[J]. Bulletin of Geological Science and Technology, 2020, 39(1): 130-136. doi: 10.19509/j.cnki.dzkq.2020.0114
Citation: Cai Zhongxian, Yu Congling, Yang Haijun, Zhang Haizu, Yuan Yuchun. Distribution and differential entrapment mechanism of the oil-water interface within Ordovican in the west part of Lungu buried hill oil field[J]. Bulletin of Geological Science and Technology, 2020, 39(1): 130-136. doi: 10.19509/j.cnki.dzkq.2020.0114

Distribution and differential entrapment mechanism of the oil-water interface within Ordovican in the west part of Lungu buried hill oil field

doi: 10.19509/j.cnki.dzkq.2020.0114
  • Received Date: 09 Dec 2019
  • The distribution of oil-water interface in the west part of Lungu buried hill oil field is very complicated because of its heterogeneity of karst-modified carbonate reservoir.In this study, we use some methods including geomorgraphy and the seismic attribute extraction techniques to sub-divided the river rank of fluviokarst, then perform the trend surface analysis for different rank of rivers to grade the karst monadnock.We also use direct, static pressure crosscoupling and the original formation pressure methods to calculate the oil-water interface of each well.The corrletion between trend surface to oil-water interface of wells shows that the first- and second-grade trend surface influence the distribution of oil-water interface in different monadnock.From Lungun 15 well area in southwest to Lungun 9 well area of middle part, The oil-water interface rise from the first- to second-grade trend surface of monadnock, influenced by fault which resulted in complicated oil-water interface of some wells.This distribution characteristics can not be completely explained by classical theory of differential entrapment because of its reservoir heterogeneity besides spill-point determined from karst river valley.High hydrocarbon-producing well tend to be controlled by the first-grade trend surface of monadnock.

     

  • loading
  • [1]
    鲁新便.缝洞型碳酸盐岩油藏开发描述及评价[D].成都: 成都理工大学, 2004.
    [2]
    张希明, 朱建国, 李宗宇, 等.塔河油田碳酸盐岩缝洞型油气藏的特征及缝洞单元划分[J].海相油气地质, 2007, 12(1):21-24. doi: 10.3969/j.issn.1672-9854.2007.01.003
    [3]
    张抗.塔河油田奥陶系油气藏性质探讨[J].海相油气地质, 2000, 5(3/4):47-53. http://d.old.wanfangdata.com.cn/Conference/283177
    [4]
    周兴熙.再论网络状油气藏与轮南潜山勘探对策[J].石油勘探与开发, 2002, 29(4):4-7. doi: 10.3321/j.issn:1000-0747.2002.04.002
    [5]
    周兴熙.初论碳酸盐岩网络状油气藏:以塔里木盆地轮南奥陶系潜山油气藏为例[J].石油勘探与开发, 2000, 27(3):5-8. doi: 10.3321/j.issn:1000-0747.2000.03.002
    [6]
    孙龙德, 江同文, 唐明龙.塔里木深层油藏开发中后期潜力分布模式: "油元"的概念、理论与实践[C]//周光召.加入WTO和中国科技与可持续发展: 挑战与机遇, 责任和对策(下册).北京: 中国科学技术出版社, 2002. http://cpfd.cnki.com.cn/Article/CPFDTOTAL-DIDD200209002650.htm
    [7]
    李传亮.用单井测压资料预测油气水界面方法的研究[J].新疆石油地质, 1993, 14(3):255-261. http://www.cnki.com.cn/Article/CJFDTotal-XJSD199303009.htm
    [8]
    闫长辉, 刘遥, 陈青.利用动态资料确定碳酸盐岩油藏油水分布:以塔河6号油田为例[J].物探化探计算技术, 2009, 31(2):135-138. doi: 10.3969/j.issn.1001-1749.2009.02.011
    [9]
    闫晓芳, 邹伟宏, 陈戈, 等.碳酸盐岩缝洞型油藏油水界面计算方法:以塔里木油田轮古15区块为例[J].石油地质与工程, 2012, 26(5):67-69. doi: 10.3969/j.issn.1673-8217.2012.05.019
    [10]
    邓兴梁, 李世银, 梁彬, 等.轮古奥陶潜山油水界面识别方法及油气分布特征评价:以轮古LG7井区为例[J].中国岩溶, 2013(3):339-344. doi: 10.3969/j.issn.1001-4810.2013.03.014
    [11]
    赵建, 马海陇, 罗云.塔河缝洞型碳酸盐岩油藏缝洞单元油水界面确定方法探讨[J].西部探矿工程, 2015(11):69-71. doi: 10.3969/j.issn.1004-5716.2015.11.021
    [12]
    饶丹, 马绪杰, 贾存善, 等.塔河油田主体区奥陶系缝洞系统与油气分布[J].石油实验地质, 2007, 29(6):589-592. doi: 10.3969/j.issn.1001-6112.2007.06.011
    [13]
    张林艳.塔河油田奥陶系缝洞型碳酸盐岩油藏的储层连通性及其油(气)水分布关系[J].中外能源, 2006, 11(5):32-36. doi: 10.3969/j.issn.1673-579X.2006.05.008
    [14]
    韩剑发, 王招明, 潘文庆, 等.轮南古隆起控油理论及其潜山准层状油气藏勘探[J].石油勘探与开发, 2006, 13(4):448-453. doi: 10.3321/j.issn:1000-0747.2006.04.011
    [15]
    刘静江, 毛光周, 阮洋, 等.轮南天窗型古潜山油气藏[J].中国石油勘探, 2009, 14(2):23-30. doi: 10.3969/j.issn.1672-7703.2009.02.004
    [16]
    韩杰, 洪涛, 朱永峰, 等.轮古油田奥陶系潜山洞穴型储层发育特征及油气分布控制因素[J].油气地质与采收率, 2016, 23(5):1-8. doi: 10.3969/j.issn.1009-9603.2016.05.001
    [17]
    陈景山, 李忠, 王振宇, 等.塔里木盆地奥陶系碳酸盐岩古岩溶作用与储层分布[J].沉积学报, 2007, 25(6):858-868. http://d.old.wanfangdata.com.cn/Periodical/cjxb200706007
    [18]
    吕修祥, 胡轩.塔里木盆地塔中低凸起油气聚集与分布[J].石油与天然气地质, 1997, 18(4):30-35. http://www.cnki.com.cn/Article/CJFDTotal-SYYT704.004.htm
    [19]
    陶云光.轮古西地区奥陶系碳酸盐岩储层特征研究[J].天然气工业, 2007, 27(2):20-22. http://d.old.wanfangdata.com.cn/Periodical/trqgy200702005
    [20]
    戴传瑞, 邹伟宏, 杨海军, 等.轮古西潜山岩溶储层发育特征与评价[J].东北石油大学学报, 2012, 36(4):24-29. doi: 10.3969/j.issn.2095-4107.2012.04.004
    [21]
    李源, 蔡忠贤, 张恒, 等.塔河油田海西早期岩溶古水系识别方法及其特征[J].地质科技情报, 2016, 35(4):184-191. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=dzkjqb201604028
    [22]
    Strahler A N.Hypsometric (area-altitude) analysis of erosion topography[J].Bulletin of American Geological Society, 1952, 63:1117-1141. doi: 10.1130/0016-7606(1952)63[1117:HAAOET]2.0.CO;2
    [23]
    Gussow W C.Differential entrapment of oil and gas:A fundamental principle[J].AAPG Bull., 1954, 38:816-853. https://pubs.geoscienceworld.org/aapgbull/article-abstract/38/5/816/549617/Differential-Entrapment-of-Oil-and-Gas-A
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article Views(359) PDF Downloads(3858) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return