Volume 39 Issue 2
Mar.  2020
Turn off MathJax
Article Contents
Lu Cao, Yan Echuan, Zhang Yu, Tan Zhaorui, Zou Hao. Seepage and stability of the colluvial landslide on the back hill of Qingshi Town Government under rainfall[J]. Bulletin of Geological Science and Technology, 2020, 39(2): 139-147. doi: 10.19509/j.cnki.dzkq.2020.0215
Citation: Lu Cao, Yan Echuan, Zhang Yu, Tan Zhaorui, Zou Hao. Seepage and stability of the colluvial landslide on the back hill of Qingshi Town Government under rainfall[J]. Bulletin of Geological Science and Technology, 2020, 39(2): 139-147. doi: 10.19509/j.cnki.dzkq.2020.0215

Seepage and stability of the colluvial landslide on the back hill of Qingshi Town Government under rainfall

doi: 10.19509/j.cnki.dzkq.2020.0215
  • Received Date: 17 Jun 2019
  • Taking the colluvial landslide of the back hill of Qingshi Town Government in Huanggang area as an example, this paper used finite element method to study the transient volumetric water content and pore water pressure of unsaturated soil based on the analysis of its engineering geological characteristics and geological structure characteristics.The Janbu method considering pore water pressure was used to calculate the effect of rainfall on the safety factor of the colluvial landslide. The results show that:①Rainfall infiltration leads to the increase of pore water pressure in the slope, and then the shear strength of the sliding surface to decrease, and so the safety factor decreases gradually. In the early stage of rainfall, the shear strength on both sides decreases faster than that in the central part. At the end of the period, the rate of decline in shear strength is significantly faster than that on both sides.②The change in safety factor shows a slow decline at the rate of 0.008/d for the first 19 d and a slow decrease at the rate of 0.03/d for 19-30 d. After 30 d, the descending speed decreases, and no change occurres after 36 d. Among them, the change of shear strength on both sides of 0-11 d contributes more to the change of overall stability than that of the central part. The contribution of shear strength change to the overall stability of 19-36 d is greater than that of the central part.③During the rainfall infiltration, groundwater flows from the surface and sides of the slope to the middle of the slope, and the negative pore water pressure area is continuously compressed to the central part. The groundwater changes in the central area are restricted by the two sides and the upper layer. The volumetric water content and the pore water pressure change are relatively lagging.④The prevention and control of the landslide is focused on the groundwater interception at the trailing edge of the slope and the groundwater discharge at the leading edge. At the same time, a good surface drainage may reduce rainfall infiltration.

     

  • loading
  • [1]
    朱文慧, 陈金国, 邹浩, 等.基于滑坡特征统计研究黄冈市2016年汛期滑坡成因机理[J].资源环境与工程, 2018, 32(增刊1):89-92. https://www.zhangqiaokeyan.com/academic-journal-cn_resources-environment-engineering_thesis/0201272212108.html
    [2]
    邹浩, 陈金国, 吴恒, 等.2016年多轮强降雨影响下黄冈市地质灾害发育规律浅析[J].资源环境与工程, 2017, 31(6):764-768.
    [3]
    贺可强, 周敦云, 王思敬.降雨型堆积层滑坡的加卸载响应比特征及其预测作用与意义[J].岩石力学与工程学报, 2004, 23(16):2665-2670. doi: 10.3321/j.issn:1000-6915.2004.16.001
    [4]
    孙红月, 吕庆.堆积层滑坡成因机理与防治[M].北京:科学出版社, 2012.
    [5]
    曾江波, 付智勇, 肖林超, 等.基于降雨作用下滑面抗剪强度动态变化的层状边坡稳定性评价[J].地质科技情报, 2018, 37(4):255-231.
    [6]
    王腾飞, 李远耀, 曹颖, 等.降雨型浅层土质滑坡非饱和土-水作用特试验研究[J].地质科技情报, 2019, 38(6):181-188.
    [7]
    李德营, 徐勇, 殷坤龙, 等.降雨型滑坡高速运动与堆积特征模拟研究:以宁乡县王家湾滑坡为例[J].地质科技情报, 2019, 38(4):225-230. http://www.cnki.com.cn/Article/CJFDTotal-DZKQ201904023.htm
    [8]
    吴火珍, 冯美果, 焦玉勇, 等.降雨条件下堆积层滑坡体滑动机制分析[J].岩土力学, 2010, 31(增刊1):324-329. doi: 10.3969/j.issn.1000-7598.2010.z1.051
    [9]
    殷坤龙, 汪洋, 唐仲华.降雨型浅层滑坡危险性预测模型[J].地质科技情报, 2002, 21(1):75-78. doi: 10.3969/j.issn.1000-7849.2012.02.019
    [10]
    汪丁建, 唐辉明, 李长冬, 等.强降雨作用下堆积层滑坡稳定性分析[J].岩土力学, 2016, 37(2):439-445. doi: 10.16285/j.rsm.2016.02.017
    [11]
    盛逸凡, 李远耀, 徐勇, 等.基于有效降雨强度和逻辑回归的降雨型滑坡预测模型[J].水文地质工程地质, 2019, 46(1):156-162, 172.
    [12]
    孙金山, 陈明, 左昌群, 等.降雨型浅层滑坡危险性预测模型[J].地质科技情报, 2012, 31(2):117-121. doi: 10.3969/j.issn.1000-7849.2012.02.019
    [13]
    唐朝晖, 孔涛, 柴波.降雨作用碎石土堆积层滑坡变形规律[J].地质科技情报, 2012, 31(6):168-173.
    [14]
    王述红, 何坚, 杨天娇.考虑降雨入渗的边坡稳定性数值分析[J].东北大学学报, 2018, 39(8):1196-1200.
    [15]
    Wang D J, Tang H M, Zhang Y H, et al.An improved approach for evaluating the time-dependent stability of colluvial landslides during intense rainfall[J].Environmental Earth Sciences, 2017, 76(8):321.
    [16]
    汪斌, 唐辉明, 朱杰兵.库水作用下的滑坡渗流、力学与稳定性[M].武汉:中国地质大学出版社, 2015.
    [17]
    Fredlund D G, Rahardjo H.非饱和土土力学[M].陈仲颐, 张在明, 陈愈炯, 等译.北京: 中国建筑工业出版社, 1997.
    [18]
    史玉成.软土的流变特性及三轴应力松弛试验仪的应用[J].岩土工程师, 1992, 4(1):1-6. http://www.ixueshu.com/document/e7a9973618dfb1d1d6dc88cb670d4d24318947a18e7f9386.html
    [19]
    Singh A, Mitchell J K.General stress-strain-time function for soils[J].Journal of the Soil Mechanics and Foundations Division, ASCE, 1968, 94(SM1):21-46. http://cn.bing.com/academic/profile?id=1bd8c6debf600b34c258c1fa99bf9b14&encoded=0&v=paper_preview&mkt=zh-cn
    [20]
    Mesri G, Retires-Cordero E, Shields D R, et al.Shear stress-strain-time behaviour of clays[J].Geotechnique, 1981, 31(4):537-552. http://cn.bing.com/academic/profile?id=aa5111ad0b64d321fdcc182ebc5cfd33&encoded=0&v=paper_preview&mkt=zh-cn
    [21]
    李军世, 林咏梅.上海淤泥质黏土的Singh-Mitchell蠕变模型[J].岩土力学, 2000, 21(4):363-366. doi: 10.3969/j.issn.1000-7598.2000.04.013
    [22]
    Zhu J G, Yin J H.Drained creep behavior of soft Hong Kong marine deposites[J].Geotechnique, 2001, 51(5):471-474. doi: 10.1680/geot.2001.51.5.471
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article Views(385) PDF Downloads(693) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return