Volume 39 Issue 4
Jul.  2020
Turn off MathJax
Article Contents
Wang Zhongkai, Xu Guangli. Effect of shield tunneling construction on bearing capacity of foundation of existing buildings and stability analysis of reinforced soil[J]. Bulletin of Geological Science and Technology, 2020, 39(4): 109-116. doi: 10.19509/j.cnki.dzkq.2020.0414
Citation: Wang Zhongkai, Xu Guangli. Effect of shield tunneling construction on bearing capacity of foundation of existing buildings and stability analysis of reinforced soil[J]. Bulletin of Geological Science and Technology, 2020, 39(4): 109-116. doi: 10.19509/j.cnki.dzkq.2020.0414

Effect of shield tunneling construction on bearing capacity of foundation of existing buildings and stability analysis of reinforced soil

doi: 10.19509/j.cnki.dzkq.2020.0414
  • Received Date: 27 Apr 2019
  • The current foundation reinforcement of existing buildings (structures) in shield tunneling construction depends on experience and lacks perfect theory as support. To better this situation, this paper studies the influence mechanism of bearing capacity of existing buildings (structures) in shield tunneling and after leaving and the stability of soil after reinforcement. In order to understand the shear state of cement-soil reinforcement, the triaxial test of cement-soil is carried out. The results show that before the deviating stress reaches the yield point, the relationship of (σ1-σ3)-ε1 is approximately linear and the strain is very small, and the shear strength of the reinforcement is far from that of the unreinforced soil. In stability analysis, the displacement of the reinforcement body and the share of shear force of the unreinforced soil outside the reinforcement body are not taken into account. In shield tunneling, the squeezing of the surrounding soil to produce shear stress diffuses to the pile side to form additional positive friction resistance, and thus increases the bearing capacity of the pile. After the shield tunneling leaves, the soil unloads, the negative friction resistance occurs at the pile side, and the bearing capacity of the pile decreases. In shield tunneling construction, the upper part of reinforcement body is subjected to passive or active earth pressure, the outer part and the lower part are subjected to static earth pressure, the difference of earth pressure produces shear stress, the potential sliding interface produces tension and compression stress, and the formula of safety factor of composite sliding surface of soil after reinforcement is derived. The strength of reinforcement body and the stability of soil after reinforcement are checked through engineering examples.

     

  • loading
  • [1]
    洪杰.双圆盾构隧道施工扰动及对周边抅筑物影响研究[D].杭州: 浙江大学, 2013.
    [2]
    魏纲, 叶琦, 虞兴福.杭州地铁盾构隧道掘进对建筑物影响的实测分析[J].现代隧道技术, 2015, 52(3):150-158. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=xdsdjs201503021
    [3]
    朱双厅.长沙地铁砂卵石地层盾构紧邻桥桩施工隔断保护研究[D].长沙: 中南大学, 2014.
    [4]
    张恒臻.地铁盾构隧道下穿既有铁路沉降分析与控制研究[D].北京: 北京交通大学, 2015.
    [5]
    刘秋常, 马百顺, 陈守开.盾构施工不同加固措施对临近高架桥桩基影响研究[J].中外公路, 2018, 38(1):172-176. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=gwgl201801038
    [6]
    汤怀凯.盾构隧道下穿既有线施工控制技术研究[D].长沙: 中南大学, 2013.
    [7]
    Yin Minglun, Jiang Hua, Jiang Yusheng, et al.Effect of the excavation clearance of an under-crossing shield tunnel on existing shield tunnels[J]. Tunnelling and Underground Space Technology, 2018, 78:245-258. doi: 10.1016/j.tust.2018.04.034
    [8]
    余乐.盾构下穿拱桥数值模拟及安全措施研究[D].成都: 西南交通大学, 2018.
    [9]
    宋慧林.地铁隧道侧穿既有桥梁桩基影响研究[D].北京: 北京交通大学, 2017.
    [10]
    袁海平, 王斌, 朱大勇, 等.盾构近距侧穿高架桥桩的施工力学行为研究[J].岩石力学与工程学报, 2014, 33(7):1457-1464. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=yslxygcxb201407018
    [11]
    芮瑞, 叶雨秋, 陈成, 等.考虑墙壁摩擦影响的挡土墙主动土压力非线性分布研究[J].岩土力学, 2019, 40(5):1-8. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=ytlx201905020
    [12]
    Fang Y S, Chen T J, Wu B F.Passive earth pressures with various wall movements[J]. Journal of Geotechnical Engineering, 1994, 120(8):1307-1323. doi: 10.1061/(ASCE)0733-9410(1994)120:8(1307)
    [13]
    Cooke R W, Price G, Tarr K.Jacked piles in London clay:A study of load transfer and settlement under working condition[J]. Geotechnique, 1979, 27(2):113-147. http://www.nrcresearchpress.com/servlet/linkout?suffix=rg3/ref3&dbid=16&doi=10.1139%2FT09-146&key=10.1680%2Fgeot.1979.29.2.113
    [14]
    周春梅, 王勇, 程月.武汉地区盾构穿过粉细砂层时地表沉降规律分析及施工参数优化[J].地质科技情报, 2018, 37(5):222-228. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=dzkjqb201805030
    [15]
    杨顺安, 刘志欣, 张迎春, 等.粉喷桩加固软土地基的认识[J].地质科技情报, 1999, 18(3):75-78. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=dzkjqb199903018
    [16]
    程华龙.注浆微型桩加固软土地基的机理与设计计算[J].地质科技情报, 1999, 18(增刊):54-56. http://www.cqvip.com/QK/93477A/1999S1/4000764157.html
    [17]
    郑先昌, 唐辉明, 覃祖淼.武汉市软基和地面沉降危害研究[J].地质科技情报, 2003, 22(2):95-99. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=dzkjqb200302021
    [18]
    徐方京.软土中盾构隧道与深基坑开挖的孔隙水压力与地层移动分析[D].上海: 同济大学, 1991.
    [19]
    曾国熙, 冯国栋, 周镜, 等.桩基工程手册[M].北京:中国建筑工业出版社, 1995.
    [20]
    张乾青, 李连祥, 李术才, 等.成层土中单桩受力性状简化算法[J].岩石力学与工程学报, 2012, 31(增刊1):3390-3394. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=yslxygcxb2012z1106
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article Views(404) PDF Downloads(1657) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return