Volume 39 Issue 5
Sep.  2020
Turn off MathJax
Article Contents
Zhou Shengtao, Fang Wen, Jiang Nan, Hu Meng, Luo Xuedong. Fractal geometry study on uniaxial compression fracture characteristics of sandstone subjected to freeze-thaw cycles[J]. Bulletin of Geological Science and Technology, 2020, 39(5): 61-68. doi: 10.19509/j.cnki.dzkq.2020.0518
Citation: Zhou Shengtao, Fang Wen, Jiang Nan, Hu Meng, Luo Xuedong. Fractal geometry study on uniaxial compression fracture characteristics of sandstone subjected to freeze-thaw cycles[J]. Bulletin of Geological Science and Technology, 2020, 39(5): 61-68. doi: 10.19509/j.cnki.dzkq.2020.0518

Fractal geometry study on uniaxial compression fracture characteristics of sandstone subjected to freeze-thaw cycles

doi: 10.19509/j.cnki.dzkq.2020.0518
  • Received Date: 18 Oct 2019
  • The mechanical properties of rocks in cold regions are often affected by freeze-thaw cycles and loads. The uniaxial compression fractures of rocks subjected to freeze-thaw cycles contain damage evolution information related to freeze-thaw cycles and loads. It is of great value to study the uniaxial compression fracture of freeze-thaw rocks for the rock fracture failure mechanism after freeze-thaw degradation. To study the uniaxial compression fracture morphology of freeze-thaw rock and its correlation with the macro mechanical parameters, in this paper, fractures of sandstone under the uniaxial compression and different freeze-thaw cycles are observed by photography. The fracture fractal dimension is calculated by the pixel covering method, and the relationship between the fractal dimension and the macro-mechanical parameters is discussed. The results indicate that as the number of freeze-thaw cycles increases, the uniaxial compressive strength, elastic modulus, fracture fractal dimension, and energy dissipation density decrease gradually, and the peak strain increases. There are exponential relationships between the three parameters (uniaxial compressive strength, elastic modulus and dissipated energy density) and the fracture fractal dimension. The larger the fracture fractal dimension is, the greater the three parameters are. The fractal dimension of the freeze-thaw rock fracture under the uniaxial compression can be used as an effective parameter for the mechanism analysis of rock failure in cold regions.

     

  • loading
  • [1]
    Chen T, Yeung M, Mori N.Effect of water saturation on deterioration of welded tuff due to freeze-thaw action[J].Cold Regions Science and Technology, 2004, 38:127-136. doi: 10.1016/j.coldregions.2003.10.001
    [2]
    Luo X, Jiang N, Fan X, et al.Effects of freeze-thaw on the determination and application of parameters of slope rock mass in cold regions[J].Cold Regions Science and Technology, 2015, 110:32-37. doi: 10.1016/j.coldregions.2014.11.002
    [3]
    Luo X, Jiang N, Zuo C, et al.Damage characteristics of altered and unaltered diabases subjected to extremely cold freeze-thaw cycles[J].Rock Mechanics and Rock Engineering, 2014, 47:1997-2004. doi: 10.1007/s00603-013-0516-2
    [4]
    Momeni A, Abdilor Y, Khanlari G R, et al.The effect of freeze-thaw cycles on physical and mechanical properties of granitoid hard rocks[J].Bulletin of Engineering Geology and the Environment, 2015, 75:1649-1656. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=a068465eecab04b1779d0ec51b6a8bac
    [5]
    Mu J, Pei X, Huang R, et al.Degradation characteristics of shear strength of joints in three rock types due to cyclic freezing and thawing[J].Cold Regions Science and Technology, 2017, 138:91-97. doi: 10.1016/j.coldregions.2017.03.011
    [6]
    Wang P, Xu J, Fang X, et al.Ultrasonic time-frequency method to evaluate the deterioration properties of rock suffered from freeze-thaw weathering[J].Cold Regions Science and Technology, 2017, 143:13-22. doi: 10.1016/j.coldregions.2017.07.002
    [7]
    杨小敏, 熊梦馨, 罗学东, 等.冻融作用下人工劈裂砂岩结构面强度特性研究[J].地质科技情报, 2019, 38(6):251-255. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=dzkjqb201906029
    [8]
    Yang X, Jiang A, Li M.Experimental investigation of the time-dependent behavior of quartz sandstone and quartzite under the combined effects of chemical erosion and freeze-thaw cycles[J].Cold Regions Science and Technology, 2019, 161:51-62. doi: 10.1016/j.coldregions.2019.03.008
    [9]
    陈有亮, 王朋, 张学伟, 等.花岗岩在化学溶蚀和冻融循环后的力学性能试验研究[J].岩土工程学报, 2014, 36(12):2226-2235. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=ytgcxb201412014
    [10]
    韩铁林, 师俊生, 陈蕴生, 等.不同化学腐蚀下砂岩冻融力学特性劣化的试验研究[J].固体力学学报, 2017, 38(6):503-519. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=gtlxxb201706003
    [11]
    Gao F, Wang Q, Deng H, et al.Coupled effects of chemical environments and freeze-thaw cycles on damage characteristics of red sandstone[J].Bulletin of Engineering Geology and the Environment, 2017, 76:1481-1490. doi: 10.1007/s10064-016-0908-0
    [12]
    Han T, Shi J, Cao X.Fracturing anddamage to sandstone under coupling effects of chemical corrosion and freeze-thaw cycles[J].Rock Mechanics & Rock Engineering, 2016, 49(11):4245-4255. doi: 10.1007/s00603-016-1028-7
    [13]
    Ni J, Chen Y, Wang P, et al.Effect of chemical erosion and freeze-thaw cycling on the physical and mechanical characteristics of granites[J].Bulletin of Engineering Geology and the Environment, 2017, 76:169-179. doi: 10.1007/s10064-016-0891-5
    [14]
    俞缙, 张欣, 蔡燕燕, 等.水化学与冻融循环共同作用下砂岩细观损伤与力学性能劣化试验研究[J].岩土力学, 2019, 40(2):455-464. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=ytlx201902006
    [15]
    傅国锋.化学和冻融循环共同作用后砂岩力学性能的劣化机制研究[D].福建厦门: 华侨大学, 2016.
    [16]
    Qu D, Li D, Li X, et al.Damage evolution mechanism and constitutive model of freeze-thaw yellow sandstone in acidic environment[J].Cold Regions Science and Technology, 2018, 155:174-183. doi: 10.1016/j.coldregions.2018.07.012
    [17]
    方振.温度-应力-化学(TMC)耦合条件下岩石损伤模型理论与试验研究[D].长沙: 中南大学, 2010.
    [18]
    王朋.化学-温度-应力耦合作用对岩石力学性能的影响[D].上海: 上海理工大学, 2013.
    [19]
    张慧梅, 杨更社.冻融与荷载耦合作用下岩石损伤模型的研究[J].岩石力学与工程学报, 2010, 29(3):471-476. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=yslxygcxb201003005
    [20]
    张慧梅, 杨更社.冻融循环条件下受荷岩石的损伤本构模型[J].武汉理工大学学报:自然科学版, 2013, 35(7):79-82. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=whgydxxb201307016
    [21]
    Huang S, Liu Q, Cheng A, et al.A statistical damage constitutive model under freeze-thaw and loading for rock and its engineering application[J].Cold Regions Science and Technology, 2018, 155:142-150. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=0efc1a7092c28056e8f1989e0f4fe2da
    [22]
    Fang W, Jiang N, Luo X.Establishment of damage statistical constitutive model of loaded rock and method for determining its parameters under freeze-thaw condition[J].Cold Regions Science and Technology, 2019, 160:31-38. doi: 10.1016/j.coldregions.2019.01.004
    [23]
    林道云, 胡小芳.基于Matlab的断面分维求算方法研究[J].煤炭技术, 2009, 28(12):149-152. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=mtjs200912068
    [24]
    温韬, 刘佑荣, 胡政, 等.高应力区砂岩加卸载条件下能量变化规律及损伤分析[J].地质科技情报, 2015, 34(2):200-206. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=dzkjqb201502029
    [25]
    王腾飞, 李远耀, 徐勇, 等.基于声发射试验的红层砂岩损伤演化特性分析[J].地质科技情报, 2019, 38(4):247-254. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=dzkjqb201904026
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article Views(540) PDF Downloads(1118) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return