Volume 39 Issue 6
Nov.  2020
Turn off MathJax
Article Contents
Li Xi, Yin Kunlong, Chen Biaodian, Li Ye, Jiang Chao, Jia Yi. Evaluation of susceptibility to karst collapse on both sides of the Yangtze River in Baishazhou, Wuhan and preventive measures in the process of metro construction[J]. Bulletin of Geological Science and Technology, 2020, 39(6): 121-130. doi: 10.19509/j.cnki.dzkq.2020.0612
Citation: Li Xi, Yin Kunlong, Chen Biaodian, Li Ye, Jiang Chao, Jia Yi. Evaluation of susceptibility to karst collapse on both sides of the Yangtze River in Baishazhou, Wuhan and preventive measures in the process of metro construction[J]. Bulletin of Geological Science and Technology, 2020, 39(6): 121-130. doi: 10.19509/j.cnki.dzkq.2020.0612

Evaluation of susceptibility to karst collapse on both sides of the Yangtze River in Baishazhou, Wuhan and preventive measures in the process of metro construction

doi: 10.19509/j.cnki.dzkq.2020.0612
  • Received Date: 27 Feb 2020
  • In recent years, during urban engineering, there have been frequent karst collapses in Wuhan city, which seriously affects urban development and citizens security. In order to ascertain the susceptibility zone of ground collapse in karst area and put forward prevention measures, the Baishazhou karst belt along the Yangtze River is taken as the study area, and 7 indicators (karst development, soil thickness, soil structure, red-strata thickness, groundwater level fluctuations, karst water level fluctuation position and the density of collapse pit) are considered as evaluation factors. Based on this, a multi-factor discriminative model of karst collapse development is established employing analytic hierarchy process, and the study area is divided into different regions with high, medium and low susceptibility through GIS spatial analysis technology. Corresponding countermeasures and suggestion are proposed on the basis of geological structure for characteristics in different stages of the subway project in the region and their different sections of the susceptibility. The result shows high-susceptibility parts are mainly located in the covered karst area on both sides of the Yangtze River, and mostly contain sandy soil. High-susceptibility parts are the key of prevention and treatment, therefore, this area should be avoided during the planning phase, and the principle of prevention and control is mainly to prevent the leakage of the overlying sand particles. The principle of moderately susceptible zoning prevention is to prevent the formation and development of soil cavities in a single clay soil and to protect the integrity of the red layer. The thickness of the red layer for low susceptibility is greater than that of the engineering construction entering the bedrock, and the possibility of karst collapse is minimal. Our study can provide a reference for the constructions on the banks of the Yangtze River in Baishazhou, Wuhan.

     

  • loading
  • [1]
    蒙彦, 雷明堂.岩溶塌陷研究现状及趋势分析[J].中国岩溶, 2019, 38(3):411-417.
    [2]
    Day M J.An assessment of karstic collapse hazards at Mount rooser, Ewarton, Jamacia[J].America Society Civil Engineers, 2003, 122:40-49. http://www.mendeley.com/research/an-assessment-of-karstic-collapse-hazards-at-mount-rosser-ewarton-jamaica-1/
    [3]
    张发旺, 贾秀梅, 赵华.灰色统计方法及其在岩溶塌陷预测分析中的应用[J].河北地质学院学报, 1996(2):144-150. http://www.cqvip.com/qk/91301x/199602/2142465.html
    [4]
    Pavel M, Fannin R J, Nelson J D.Replication of a terrain stability mapping using an artificial neural network[J].Geomorphology, 2008, 97(3/4):356-373.
    [5]
    陈学军, 陈植华, 陈先华, 等.桂林市西城区岩溶塌陷模糊层次综合预测[J].桂林工学院学报, 2000(2):112-116.
    [6]
    陈明晓.岩溶覆盖层塌陷的原因分析及其半定量预测[J].岩石力学与工程学报, 2002(2):285-289.
    [7]
    姜春露, 姜振泉.基于Fisher判别分析法的岩溶塌陷预测[J].地球科学与环境学报, 2012, 34(1):91-95.
    [8]
    罗小杰, 罗程.覆盖型岩溶地面塌陷综合地质预测与危险性评估[J].中国岩溶, 2016, 35(1):51-59. http://www.cqvip.com/QK/95841X/201601/668857777.html
    [9]
    Panno S V, Kelly W R, Angel J C, et al.Hydrogeologic and topographic controls on evolution of karst features in Illinois' sinkhole plain[J].Carbonates Evaporites, 2013, 28(1/2):13-21. doi: 10.1007/s13146-013-0157-2
    [10]
    Jiang F, Dai J, Lei M, et al.Experimental study on the critical triggering condition of soil failure in subsidence sinkholes[J].Environmental Earth Sciences, 2015, 74(1):693-701. doi: 10.1007/s12665-015-4074-7
    [11]
    Bai H, Ma D, Chen Z.Mechanical behavior of groundwater seepage in karst collapse pillars[J].Engineering Geology, 2013, 164:101-106. doi: 10.1016/j.enggeo.2013.07.003
    [12]
    陈邦松.湖北省武汉市某区岩溶塌陷风险评价研究[D].北京: 中国地质大学(北京), 2015.
    [13]
    贾晓青, 刘建, 罗明明, 等.基于改进的DRASTIC模型对香溪河典型岩溶流域地下水脆弱性评价[J].地质科技情报, 2019, 38(4):255-261. http://www.cnki.com.cn/Article/CJFDTotal-DZKQ201904027.htm
    [14]
    杜浩, 汪洋, 周宏, 等.基于易发性评价的地质灾害利用区域选划研究[J].地质科技情报, 2018, 37(6):266-273. http://www.cnki.com.cn/Article/CJFDTotal-DZKQ201806034.htm
    [15]
    王芳, 殷坤龙, 桂蕾, 等.不同日降雨工况下万州区滑坡灾害危险性分析[J].地质科技情报, 2018, 37(1):190-195, 203.
    [16]
    Yalcin A, Reis S, Aydinoglu A C, et al.A GIS-based comparative study of frequency ratio, analytical hierarchy process, bivariate statistics and logistics regression methods for landslide susceptibility mapping in Trabzon, NE Turkey[J].Catena, 2011, 85(3):274-287. doi: 10.1016/j.catena.2011.01.014
    [17]
    Roberto Salvati, Ira D Sasousky.Development of collapse sinkholes in areas of groundwater discharge[J].Journal of Hydrology, 2002, 264:1-11. doi: 10.1016/S0022-1694(02)00062-8
    [18]
    胡亚波, 刘广润, 肖尚德, 等.一种复合型岩溶地面塌陷的形成机理:以武汉市烽火村塌陷为例[J].地质科技情报, 2007, 26(1):96-100. http://www.cqvip.com/Main/Detail.aspx?id=23678108
    [19]
    Katarina Z, Daniel H, Kronenfeld B, et al.Predicting sink hole susceptibility in Frederick Valley, Mary and using geographically weighted regression[C]//Anon.11th Multidisciplinary Conference on Sinkholes and the Engineering and Environmental Impacts of Karst.:, 2008, 11: 243-255.
    [20]
    Waltham T, Bell F G, Culshaw M.Sinkholes and subsidence:Karst and cavernous rocks in engineering and construction[J].Speleogenesis & Evolution of Karst Aquifers, 2007, 13(2):142-143.
    [21]
    罗小杰, 张恒, 沈建, 等.武汉地铁基坑岩土地质结构类型、支护和地下水治理措施[J].江汉大学学报:自然科学版, 2018, 46(4):337-351.
    [22]
    樊永生, 李爱军, 汤江红.武昌倒口湖地区F地块岩溶特征、地面塌陷机理分析及治理措施[J].资源环境与工程, 2010, 24(4):394-397, 407.
    [23]
    杨涛, 涂婧, 殷美, 等.武汉市岩溶塌陷分类及防治对策[J].资源环境与工程, 2013, 27(5):661-664.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article Views(848) PDF Downloads(3529) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return