Volume 39 Issue 6
Nov.  2020
Turn off MathJax
Article Contents
He Lianglun, Liu Yu, Yang Kunguang, Cai Jingchen, Wang Jun, Xu Yang. Discovery of 2.5 Ga quartz monzodiorite and its geological significance in Hezhang, western Guizhou[J]. Bulletin of Geological Science and Technology, 2020, 39(6): 30-42. doi: 10.19509/j.cnki.dzkq.2020.0615
Citation: He Lianglun, Liu Yu, Yang Kunguang, Cai Jingchen, Wang Jun, Xu Yang. Discovery of 2.5 Ga quartz monzodiorite and its geological significance in Hezhang, western Guizhou[J]. Bulletin of Geological Science and Technology, 2020, 39(6): 30-42. doi: 10.19509/j.cnki.dzkq.2020.0615

Discovery of 2.5 Ga quartz monzodiorite and its geological significance in Hezhang, western Guizhou

doi: 10.19509/j.cnki.dzkq.2020.0615
  • Received Date: 05 Nov 2019
  • The western Guizhou is located at the southwest margin of the Yangtze Block.The record of 2.5 Ga magmatic events in the Yangtze Block is very little.The Hezhang quartz monzodiorite recently discovered in western Guizhou shows that the LA-ICP-MS U-Pb age of the rock is (2 542±9)Ma, which is the first late Neoarchean rock found in this area.The rock is mainly composed of plagioclase, alkaline feldspar, quartz, amphibole, biotite, etc.It has medium high content of SiO2 (59.2%-60.6%), Na2O (4.70%-4.85%), and Na2O/K2O (3.02%-3.19%)ratios, and low content of Al2O3 (17%-17.7%) and MgO(2.42%-2.61%).The total number of rare earth elements (REE) was 120×10-6-221×10-6, (La/Yb)N=(8.32-17.98), and the differentiation of light- and heavy-REEs was not obvious, which showed a right-leaning type.The rocks have negative anomaly of Eu, enrichment in large ion lithophile elements (LILEs)(Ba, Sr) and deficency in high field strong elements (HSFEs) (Nb, Ta, Ti).The samples have weak negative to positive εHf(t) value (-0.51-+6.93) and positive εNd(t) value (+0.22-+0.88).The rock has the characteristics of low-Al type and high HREE TTG series.The comprehensive study shows that this rock may be formed by partial melting of metasomatism between the oceanic subducted plate and the water-bearing mantle wedge in the low-pressure shallow environment under eclogite facies.The residual phases in the source area are mainly rutile and a small amount of amphibole.This first report of 2.5 Ga rocks confirms the existence of the Neoarchean basement in the southwest margin of Yangtze Block, which provides a basis for the study of detrital zircons of Neoarchean magmatic origin around the Yangtze Block and provides new information for the evolution of the Neoarchean crust of the Yangtze Block.

     

  • loading
  • [1]
    Moyen J F, Martin H.Forty years of TTG research[J].Lithos, 2012, 148(Cmomplete):312-336. http://www.sciencedirect.com/science/article/pii/S0024493712002332
    [2]
    张旗, 翟明国.太古宙TTG岩石是什么含义?[J].岩石学报, 2012, 28(11):3446-3456. http://www.cnki.com.cn/Article/CJFDTotal-YSXB201211004.htm
    [3]
    Gao S, Ling W L, Qiu Y M, et al.Contrasting geochemical and Sm-Nd isotopic compositions of archean metasediments from the Kongling High-Grade Terrain of the Yangtze Craton:Evidence for cratonic evolution and redistribution of REE during crustal anatexis[J].Geochimica et Cosmochimica Acta, 1999, 63(13/14):2071-2088. http://www.sciencedirect.com/science/article/pii/S0016703799001532
    [4]
    Guo J L, Gao S, Wu Y B, et al.3.45 Ga Granitic gneisses from the Yangtze craton, south China:Implications for early archean crustal growth[J].Precambrian Research, 2014, 242:82-95. doi: 10.1016/j.precamres.2013.12.018
    [5]
    Han P Y, Guo J L, Chen K, et al.Widespread neoarchean (2.7-2.6 Ga) magmatism of the Yangtze craton, south China, as revealed by modern river detrital zircons[J].Gondwana Research, 2017, 42:1-12. doi: 10.1016/j.gr.2016.09.006
    [6]
    Liu X M, Gao S, Diwu CR, et al.Precambrian crustal growth of Yangtze craton as revealed revealed by detrital zircon studies[J].American Journal of Science, 2008, 208(4):421-468. http://www.researchgate.net/publication/240797310_Precambrian_crustal_growth_of_Yangtze_Craton_as_revealed_by_detrital_zircon_studies
    [7]
    Qiu Y M, Gao S, McNaughton N J, et al.Frist evidence of >3.2 Ga continental crust in the Yangtze craton of south China and its implications for Archean crustal evolution and Phanerozoic tectonics[J].Geology, 2000, 28(1):11-14. doi: 10.1130/0091-7613(2000)028<0011:FEOGCC>2.0.CO;2
    [8]
    Wang Z J, Wang J, Du Q D, et al.The evolution of the central Yangtze block during early neoarchean time:Evidence from geochronology and geochemistry[J].Joural of Asian Earth Science, 2013, 77(15):31-44.
    [9]
    Wang Z J, Wang J, Du Q D, et al.Mature archean continental, geochronology and geochemistry[J].Chinese Science Bulletin, 2013, 58(19):2360-2369. doi: 10.1007/s11434-013-5668-7
    [10]
    Wu Y B, Zheng Y F, Gao S, et al.Zircon U-Pb age and trace evidence for paleoproterozoic granulite-facies metamorphism and archean crustal rocks in the Dabie orogen[J].Lithos, 2008, 101(3/4):308-322.
    [11]
    Wu Y B, Gao S, Zhang H F, et al.Geochemistry and zircon U-Pb geochronology of paleoproterozoic arc related granitoid in the northwestern Yangtze block and its geological implications[J].Precambrian Research, 2012, 200/203:26-37. doi: 10.1016/j.precamres.2011.12.015
    [12]
    Chen K, Gao S, Wu Y B, et al.2.6-2.7 Ga crustal growth in Yangtze craton, south China[J].Precambrian Research, 2013, 224:472-490. doi: 10.1016/j.precamres.2012.10.017
    [13]
    Gao S, Yang J, Zhou L, et al.Age and growth of the archean kongling terrain, south China, with Emphasis on 3.3 Ga granitoid gneisses[J].American Journal of Science, 2011, 311(2):153-182. doi: 10.2475/02.2011.03
    [14]
    Guo J L, Wu Y B, Gao S, et al.Episodic paleoarchean-paleoproterozoic (3.3-2.0 Ga) granitoid magmatism in Yangtze craton, south China:Implications for Late Archean tectonics[J].Precambrian Research, 2015, 270:246-266. doi: 10.1016/j.precamres.2015.09.007
    [15]
    Zhang S B, Zheng Y F, Wu Y B, et al.Zircon U-Pb age and Hf isotope evidence for 3.8 Ga crustal remnant and episodic reworking of archean crust in south China[J].Earth and Planetary Science Letters, 2006, 252(1/2):56-71.
    [16]
    Jiao W F, Wu Y B, Yang S H, et al.The oldest basement rock in the Yangtze Craton revealed by zircon U-Pb age and Hf isotope composition[J].Science in China Series D:Earth Sciences, 2009, 59(2):1393-1399.
    [17]
    Zhou G Y, Wu Y B, Gao S, et al.The 2.65 Ga a-type granite in the northeastern Yangtze craton:Petrogenesis and geological implications[J].Prcambrian Research, 2015, 258:247-259. doi: 10.1016/j.precamres.2015.01.003
    [18]
    韩润生, 王峰, 胡煜昭, 等.会泽型(HZT)富锗银铅锌矿床成矿构造动力学研究及年代学约束[J].大地构造与成矿学, 2014, 38(4):758-771. http://www.cnki.com.cn/Article/CJFDTotal-DGYK201404003.htm
    [19]
    Hu Z C, Zhang W, Liu Y S, et al."Wave" signal smoothing and mercury removing device for laser ablation quadrupole and multiple collector ICP-MS analysis:Application to lead isotope analysis[J].Analytical Chemistry, 2015, 87(2):1152-1157. doi: 10.1021/ac503749k
    [20]
    Liu Y S, Hu Z C, Gao S, et al.In situ analysis of major and trace elements of anhydrous minerals by LA-ICP-MS without applying an internalstandard[J].Chemical Geology, 2008, 257(1/2):34-43.
    [21]
    Liu Y S, Gao S, Hu Z C, et al.Continental and oceanic crust recycling-induced melt-peridotite interactions in the Trans-North China Orogen:U-Pb dating, Hf isotopes and trace elements in zircons of mantle xenoliths[J].Journal of Petrology, 2010, 51:537-571. doi: 10.1093/petrology/egp082
    [22]
    Ludwig K R.ISOPLOT 3.00:A Geochronological Toolkit for Microsoft Excel[M].California, Berkeley:Berkeley Geochronology Center, 2003:39.
    [23]
    Russell W A, Papanastassiou D A, Tombrello T A.Ca isotope fractionation on the earth and other solar system materials[J].Geochimica et Cosmochimica Acta, 1978, 42(8):1075-1090. doi: 10.1016/0016-7037(78)90105-9
    [24]
    Thirlwall M F.Long-term reproducibility of multicollector Sr and Nd isotope ratio analysis[J].Chemical Geology, 1991, 94(2):85-104. doi: 10.1016/S0009-2541(10)80021-X
    [25]
    Li C F, Li X H, Li Q L, et al.Rapid and precise determination of Sr and Nd isotopic ratios in geological samples from the same filament loading by thermal ionization mass spectrometry employing a single-step separation scheme[J].Analytica Chimica Acta, 2012, 727(10):54-60.
    [26]
    Tanaka T, Togashi S, Kamioka H, et al.Jndi-1:A neodymium isotopic reference in consistency with lajolla neodymium[J].Chemical Geology, 2000, 168(3/4):279-281.
    [27]
    Weis D, Kieffer B, Maerschalk C, et al.High-precision isotopic characterization of USGS reference materials by TIMs and MC-ICP-MS[J].Geochemistry Geophysics Geosystems, 2006, 7(8):139-149. doi: 10.1029/2006GC001283/full
    [28]
    Hu Z C, Liu Y S, Gao S, et al.A "wire" signal smoothing device for laser ablation inductively coupled plasma mass spectrometry analysis[J].Spectrochimica Acta Part B:Atomic Spectroscopy, 2012, 78:50-57. doi: 10.1016/j.sab.2012.09.007
    [29]
    Hu Z C, Liu Y S, Gao S, et al.Improved in situ Hf isotope ratio analysis of zircon using newly designed X skimmer cone and jet sample cone in combination with the addition of nitrogen by laser ablation multiple collector ICP-MS[J].Journal of Analytical Atomic Spectrometry, 2012, 27(9):1391-1399. doi: 10.1039/c2ja30078h
    [30]
    Fisher C M, Vervoort J D, Hanchar J M.Guidelines for reporting zircon Hf isotopic data by LA-MC-ICP MS and potential pitfalls in the interpretation of thesedata[J].Chemical Geology, 2014, 363:125-133. doi: 10.1016/j.chemgeo.2013.10.019
    [31]
    Blichert-Toft J, Chauvel C, Albarède F.Separation of Hf and Lu for high-precision isotope analysis of rock samples by magnetic sector-multiple collector ICP-MS[J].Contributions to Mineralogy and Petrology, 1997, 127:248-260. doi: 10.1007/s004100050278
    [32]
    Halla J, Hunen J V, Heilimo E, et al.Geochemical and numerical constraints on Neoarchean plate tectonics[J].Precambrian Research, 2009, 174:155-162. doi: 10.1016/j.precamres.2009.07.008
    [33]
    Haskin L A, Haskin M A, Frey F A, et al.Relative and absolute terrestrial abundances of the rare earths[C]//Ahrens L H.Origin and distribution of the elements: A volume in international series of monographs in earth sciences.Oxford: Pergamon Press, 1968: 889-911.
    [34]
    Sun S S, McDonough W F.Chemical and isotopic systematics of oceanic basalts:Implications for mantle composition and processes[J].Geological Society, London, Special Publication, 1989, 42(1):313-345. doi: 10.1144/GSL.SP.1989.042.01.19
    [35]
    Liu Y, Yang K G, Polat A, et al.Reconstruction of the cryogenian palaeogeography in the Yangtze domain:Constraints from detrital age patterns[J].Geological Magzine, 2019, 156(7):1247-1264. doi: 10.1017/S0016756818000535
    [36]
    Condie K C.TTGs and adakites:Are they both slab melts?[J].Lithos, 2005, 80:33-44. doi: 10.1016/j.lithos.2003.11.001
    [37]
    Foley S, Tiepolo M, Vannucci R.Growth of early continental crust controlled by melting of amphibolites in subduction zones[J].Nature, 2002, 417(6891):837-840. doi: 10.1038/nature00799
    [38]
    Moyen J F.The composite Archaean grey gneisses:Petrological significance and evidence for a non-uniqu tectonic setting for Archaean crustal growth[J].Lithos, 2011, 123(1/4):21-36. http://www.sciencedirect.com/science/article/pii/S0024493710002665
    [39]
    Hoffmann J E, Munker C, Naeraa T, et al.Mechanisms of Archean crust formation inferred from high- precision HFSE systematics in TTGs[J].Geochimica et Cosmochimica Acta, 2011, 75(15):4157-4178. doi: 10.1016/j.gca.2011.04.027
    [40]
    洪涛, 游军, 吴楚, 等.滇西桃花花岗斑岩中新太古代古元古代锆石年龄信息:对扬子板块西缘基底时代的约束[J].岩石学报, 2015, 31(9):2583-2596. http://www.cnki.com.cn/Article/CJFDTotal-YSXB201509009.htm
    [41]
    Martin H.Petrogenesis of archaean trondhjemites, tonalites and granodiorites from eastern finland:major and trace elements geochemistry[J].Journal of Petrology, 1987, 28(5):921-953. doi: 10.1093/petrology/28.5.921
    [42]
    Moyen J F, Stevens G.Experimental constraints on TTG petrogenesis: Implications for Archean Geodynamics[C]//Benn K, Mareschal J C, Condie K C.Archean geodynamics and environments.Geophysical monograph 164.Washington, DC: American Geophysical Union, 2006.
    [43]
    Arth J G, Barker F.Rare-earth partitioning between hornblende and dacitic liquid and implications for the genesis of trondhjemitic-tonaliticmagmas[J].Geology, 1976, 4(9):534-536. doi: 10.1130/0091-7613(1976)4<534:RPBHAD>2.0.CO;2
    [44]
    Barker F, Arth J G.Generation of trondhjemitic-tonalitic liquids and Archaean bimodal trondhjemite-basaltsuites[J].Geology, 1976, 4(10):596-600. doi: 10.1130/0091-7613(1976)4<596:GOTLAA>2.0.CO;2
    [45]
    White R V, Tarney J, Kerr A C, et al.Modification of an oceanic plateau, Aruba, Dutch Caribbean:Implications for the generation of continental crust[J].Lithos, 1999, 46:43-68. doi: 10.1016/S0024-4937(98)00061-9
    [46]
    Weiberg R F, Hasalová P.Water-fluxed melting of the continental curst:A Review[J].Lithos, 2015, 212/215:158-188. doi: 10.1016/j.lithos.2014.08.021
    [47]
    吴鸣谦, 左梦璐, 张德会, 等.TTG岩套的成因及其形成环境[J].地质论评, 2014, 60(3):503-514.
    [48]
    谢燮, 李文明, 孙吉明, 等.新疆北山地区白山镁铁岩体LA-ICP-MS锆石U-Pb年龄、地球化学特征及其找矿意义[J].地质科技情报, 2018, 37(6):11-12.
    [49]
    孟德磊, 贾小辉, 谢国刚, 等.粤南长蛇山分异Ⅰ型花岗岩的年代学、地球化学特征及其构造意义[J].地质科技情报, 2019, 38(4):193-204.
    [50]
    Arth J G, Barker F, Peterman Z E, et al.Geochemistry of the gabbro-diorite-tonalite-trondhjemite suite of Southwest Finland and its implications for the origin of tonalitic and trondhjemitic magmas[J].Journal of Petrology, 1978, 19(2):289-316. doi: 10.1093/petrology/19.2.289
    [51]
    Drummond M S, Defant M J.A model for trondhjemite-tonalitedacite genesis and crustal growth via slab melting:Archean to modern comparisons[J].Journal of Geophysical Research, 1990, 95(B13):21503-21521. doi: 10.1029/JB095iB13p21503
    [52]
    Drummond M S, Defant M J, Kepezhinskas P K.Petrogenesis of slab-derived trondhjemite-tonalite-dacite/adakite magmas[J].Transactions of the Royal Society of Edinburgh:Earth Sciences, 1996, 87(1/2):205-215. http://journals.cambridge.org/action/displayAbstract?fromPage=online&aid=8345451&fulltextType=RA&fileId=S0263593300006611
    [53]
    张华锋, 王浩铮, 豆敬兆, 等.华北克拉通怀安陆块新太古代低铝和高铝TTG片麻岩的地球化学特征与成因[J].岩石学报, 2015, 31(6):1518-1534. http://d.wanfangdata.com.cn/Periodical/ysxb98201506003
    [54]
    杨坤光, 何良伦, 刘雨, 等.黔西逆冲滑脱构造及其对铅锌矿床的控制[J].地质科技通报, 2020, 39(1):149-156. http://dzkjqb.cug.edu.cn/CN/abstract/abstract9935.shtml
    [55]
    Zong K Q, Klemd R, Yuan Y, et al.The assembly of Rodinia:The correlation of early Neoproterozoic (ca.900 Ma) high-grade metamorphism and continental arc formation in the southern Beishan Orogen, southern Central Asian Orogenic Belt (CAOB)[J].Precambrian Research, 2017, 290:32-48. doi: 10.1016/j.precamres.2016.12.010
    [56]
    Barker F, Arth J G, Peterman Z E, et al.The 1.7- to 1.8-b.y.-old trondhjemites of southwestern Colorado and northern New Mexico:Geochemistry and depths of genesis[J].Geological Society of America Bulletin, 1976, 87(2):189-198 doi: 10.1130/0016-7606(1976)87<189:TTBTOS>2.0.CO;2
    [57]
    Barker F.Trondhjemites: Definition, environment and hypotheses oforigin[C]//Barker F.Trondhjemites dacites and related rocks.Amsterdam: Elsevier, 1979: 1-12.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article Views(614) PDF Downloads(4272) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return