Citation: | He Lianglun, Liu Yu, Yang Kunguang, Cai Jingchen, Wang Jun, Xu Yang. Discovery of 2.5 Ga quartz monzodiorite and its geological significance in Hezhang, western Guizhou[J]. Bulletin of Geological Science and Technology, 2020, 39(6): 30-42. doi: 10.19509/j.cnki.dzkq.2020.0615 |
[1] |
Moyen J F, Martin H.Forty years of TTG research[J].Lithos, 2012, 148(Cmomplete):312-336. http://www.sciencedirect.com/science/article/pii/S0024493712002332
|
[2] |
张旗, 翟明国.太古宙TTG岩石是什么含义?[J].岩石学报, 2012, 28(11):3446-3456. http://www.cnki.com.cn/Article/CJFDTotal-YSXB201211004.htm
|
[3] |
Gao S, Ling W L, Qiu Y M, et al.Contrasting geochemical and Sm-Nd isotopic compositions of archean metasediments from the Kongling High-Grade Terrain of the Yangtze Craton:Evidence for cratonic evolution and redistribution of REE during crustal anatexis[J].Geochimica et Cosmochimica Acta, 1999, 63(13/14):2071-2088. http://www.sciencedirect.com/science/article/pii/S0016703799001532
|
[4] |
Guo J L, Gao S, Wu Y B, et al.3.45 Ga Granitic gneisses from the Yangtze craton, south China:Implications for early archean crustal growth[J].Precambrian Research, 2014, 242:82-95. doi: 10.1016/j.precamres.2013.12.018
|
[5] |
Han P Y, Guo J L, Chen K, et al.Widespread neoarchean (2.7-2.6 Ga) magmatism of the Yangtze craton, south China, as revealed by modern river detrital zircons[J].Gondwana Research, 2017, 42:1-12. doi: 10.1016/j.gr.2016.09.006
|
[6] |
Liu X M, Gao S, Diwu CR, et al.Precambrian crustal growth of Yangtze craton as revealed revealed by detrital zircon studies[J].American Journal of Science, 2008, 208(4):421-468. http://www.researchgate.net/publication/240797310_Precambrian_crustal_growth_of_Yangtze_Craton_as_revealed_by_detrital_zircon_studies
|
[7] |
Qiu Y M, Gao S, McNaughton N J, et al.Frist evidence of >3.2 Ga continental crust in the Yangtze craton of south China and its implications for Archean crustal evolution and Phanerozoic tectonics[J].Geology, 2000, 28(1):11-14. doi: 10.1130/0091-7613(2000)028<0011:FEOGCC>2.0.CO;2
|
[8] |
Wang Z J, Wang J, Du Q D, et al.The evolution of the central Yangtze block during early neoarchean time:Evidence from geochronology and geochemistry[J].Joural of Asian Earth Science, 2013, 77(15):31-44.
|
[9] |
Wang Z J, Wang J, Du Q D, et al.Mature archean continental, geochronology and geochemistry[J].Chinese Science Bulletin, 2013, 58(19):2360-2369. doi: 10.1007/s11434-013-5668-7
|
[10] |
Wu Y B, Zheng Y F, Gao S, et al.Zircon U-Pb age and trace evidence for paleoproterozoic granulite-facies metamorphism and archean crustal rocks in the Dabie orogen[J].Lithos, 2008, 101(3/4):308-322.
|
[11] |
Wu Y B, Gao S, Zhang H F, et al.Geochemistry and zircon U-Pb geochronology of paleoproterozoic arc related granitoid in the northwestern Yangtze block and its geological implications[J].Precambrian Research, 2012, 200/203:26-37. doi: 10.1016/j.precamres.2011.12.015
|
[12] |
Chen K, Gao S, Wu Y B, et al.2.6-2.7 Ga crustal growth in Yangtze craton, south China[J].Precambrian Research, 2013, 224:472-490. doi: 10.1016/j.precamres.2012.10.017
|
[13] |
Gao S, Yang J, Zhou L, et al.Age and growth of the archean kongling terrain, south China, with Emphasis on 3.3 Ga granitoid gneisses[J].American Journal of Science, 2011, 311(2):153-182. doi: 10.2475/02.2011.03
|
[14] |
Guo J L, Wu Y B, Gao S, et al.Episodic paleoarchean-paleoproterozoic (3.3-2.0 Ga) granitoid magmatism in Yangtze craton, south China:Implications for Late Archean tectonics[J].Precambrian Research, 2015, 270:246-266. doi: 10.1016/j.precamres.2015.09.007
|
[15] |
Zhang S B, Zheng Y F, Wu Y B, et al.Zircon U-Pb age and Hf isotope evidence for 3.8 Ga crustal remnant and episodic reworking of archean crust in south China[J].Earth and Planetary Science Letters, 2006, 252(1/2):56-71.
|
[16] |
Jiao W F, Wu Y B, Yang S H, et al.The oldest basement rock in the Yangtze Craton revealed by zircon U-Pb age and Hf isotope composition[J].Science in China Series D:Earth Sciences, 2009, 59(2):1393-1399.
|
[17] |
Zhou G Y, Wu Y B, Gao S, et al.The 2.65 Ga a-type granite in the northeastern Yangtze craton:Petrogenesis and geological implications[J].Prcambrian Research, 2015, 258:247-259. doi: 10.1016/j.precamres.2015.01.003
|
[18] |
韩润生, 王峰, 胡煜昭, 等.会泽型(HZT)富锗银铅锌矿床成矿构造动力学研究及年代学约束[J].大地构造与成矿学, 2014, 38(4):758-771. http://www.cnki.com.cn/Article/CJFDTotal-DGYK201404003.htm
|
[19] |
Hu Z C, Zhang W, Liu Y S, et al."Wave" signal smoothing and mercury removing device for laser ablation quadrupole and multiple collector ICP-MS analysis:Application to lead isotope analysis[J].Analytical Chemistry, 2015, 87(2):1152-1157. doi: 10.1021/ac503749k
|
[20] |
Liu Y S, Hu Z C, Gao S, et al.In situ analysis of major and trace elements of anhydrous minerals by LA-ICP-MS without applying an internalstandard[J].Chemical Geology, 2008, 257(1/2):34-43.
|
[21] |
Liu Y S, Gao S, Hu Z C, et al.Continental and oceanic crust recycling-induced melt-peridotite interactions in the Trans-North China Orogen:U-Pb dating, Hf isotopes and trace elements in zircons of mantle xenoliths[J].Journal of Petrology, 2010, 51:537-571. doi: 10.1093/petrology/egp082
|
[22] |
Ludwig K R.ISOPLOT 3.00:A Geochronological Toolkit for Microsoft Excel[M].California, Berkeley:Berkeley Geochronology Center, 2003:39.
|
[23] |
Russell W A, Papanastassiou D A, Tombrello T A.Ca isotope fractionation on the earth and other solar system materials[J].Geochimica et Cosmochimica Acta, 1978, 42(8):1075-1090. doi: 10.1016/0016-7037(78)90105-9
|
[24] |
Thirlwall M F.Long-term reproducibility of multicollector Sr and Nd isotope ratio analysis[J].Chemical Geology, 1991, 94(2):85-104. doi: 10.1016/S0009-2541(10)80021-X
|
[25] |
Li C F, Li X H, Li Q L, et al.Rapid and precise determination of Sr and Nd isotopic ratios in geological samples from the same filament loading by thermal ionization mass spectrometry employing a single-step separation scheme[J].Analytica Chimica Acta, 2012, 727(10):54-60.
|
[26] |
Tanaka T, Togashi S, Kamioka H, et al.Jndi-1:A neodymium isotopic reference in consistency with lajolla neodymium[J].Chemical Geology, 2000, 168(3/4):279-281.
|
[27] |
Weis D, Kieffer B, Maerschalk C, et al.High-precision isotopic characterization of USGS reference materials by TIMs and MC-ICP-MS[J].Geochemistry Geophysics Geosystems, 2006, 7(8):139-149. doi: 10.1029/2006GC001283/full
|
[28] |
Hu Z C, Liu Y S, Gao S, et al.A "wire" signal smoothing device for laser ablation inductively coupled plasma mass spectrometry analysis[J].Spectrochimica Acta Part B:Atomic Spectroscopy, 2012, 78:50-57. doi: 10.1016/j.sab.2012.09.007
|
[29] |
Hu Z C, Liu Y S, Gao S, et al.Improved in situ Hf isotope ratio analysis of zircon using newly designed X skimmer cone and jet sample cone in combination with the addition of nitrogen by laser ablation multiple collector ICP-MS[J].Journal of Analytical Atomic Spectrometry, 2012, 27(9):1391-1399. doi: 10.1039/c2ja30078h
|
[30] |
Fisher C M, Vervoort J D, Hanchar J M.Guidelines for reporting zircon Hf isotopic data by LA-MC-ICP MS and potential pitfalls in the interpretation of thesedata[J].Chemical Geology, 2014, 363:125-133. doi: 10.1016/j.chemgeo.2013.10.019
|
[31] |
Blichert-Toft J, Chauvel C, Albarède F.Separation of Hf and Lu for high-precision isotope analysis of rock samples by magnetic sector-multiple collector ICP-MS[J].Contributions to Mineralogy and Petrology, 1997, 127:248-260. doi: 10.1007/s004100050278
|
[32] |
Halla J, Hunen J V, Heilimo E, et al.Geochemical and numerical constraints on Neoarchean plate tectonics[J].Precambrian Research, 2009, 174:155-162. doi: 10.1016/j.precamres.2009.07.008
|
[33] |
Haskin L A, Haskin M A, Frey F A, et al.Relative and absolute terrestrial abundances of the rare earths[C]//Ahrens L H.Origin and distribution of the elements: A volume in international series of monographs in earth sciences.Oxford: Pergamon Press, 1968: 889-911.
|
[34] |
Sun S S, McDonough W F.Chemical and isotopic systematics of oceanic basalts:Implications for mantle composition and processes[J].Geological Society, London, Special Publication, 1989, 42(1):313-345. doi: 10.1144/GSL.SP.1989.042.01.19
|
[35] |
Liu Y, Yang K G, Polat A, et al.Reconstruction of the cryogenian palaeogeography in the Yangtze domain:Constraints from detrital age patterns[J].Geological Magzine, 2019, 156(7):1247-1264. doi: 10.1017/S0016756818000535
|
[36] |
Condie K C.TTGs and adakites:Are they both slab melts?[J].Lithos, 2005, 80:33-44. doi: 10.1016/j.lithos.2003.11.001
|
[37] |
Foley S, Tiepolo M, Vannucci R.Growth of early continental crust controlled by melting of amphibolites in subduction zones[J].Nature, 2002, 417(6891):837-840. doi: 10.1038/nature00799
|
[38] |
Moyen J F.The composite Archaean grey gneisses:Petrological significance and evidence for a non-uniqu tectonic setting for Archaean crustal growth[J].Lithos, 2011, 123(1/4):21-36. http://www.sciencedirect.com/science/article/pii/S0024493710002665
|
[39] |
Hoffmann J E, Munker C, Naeraa T, et al.Mechanisms of Archean crust formation inferred from high- precision HFSE systematics in TTGs[J].Geochimica et Cosmochimica Acta, 2011, 75(15):4157-4178. doi: 10.1016/j.gca.2011.04.027
|
[40] |
洪涛, 游军, 吴楚, 等.滇西桃花花岗斑岩中新太古代古元古代锆石年龄信息:对扬子板块西缘基底时代的约束[J].岩石学报, 2015, 31(9):2583-2596. http://www.cnki.com.cn/Article/CJFDTotal-YSXB201509009.htm
|
[41] |
Martin H.Petrogenesis of archaean trondhjemites, tonalites and granodiorites from eastern finland:major and trace elements geochemistry[J].Journal of Petrology, 1987, 28(5):921-953. doi: 10.1093/petrology/28.5.921
|
[42] |
Moyen J F, Stevens G.Experimental constraints on TTG petrogenesis: Implications for Archean Geodynamics[C]//Benn K, Mareschal J C, Condie K C.Archean geodynamics and environments.Geophysical monograph 164.Washington, DC: American Geophysical Union, 2006.
|
[43] |
Arth J G, Barker F.Rare-earth partitioning between hornblende and dacitic liquid and implications for the genesis of trondhjemitic-tonaliticmagmas[J].Geology, 1976, 4(9):534-536. doi: 10.1130/0091-7613(1976)4<534:RPBHAD>2.0.CO;2
|
[44] |
Barker F, Arth J G.Generation of trondhjemitic-tonalitic liquids and Archaean bimodal trondhjemite-basaltsuites[J].Geology, 1976, 4(10):596-600. doi: 10.1130/0091-7613(1976)4<596:GOTLAA>2.0.CO;2
|
[45] |
White R V, Tarney J, Kerr A C, et al.Modification of an oceanic plateau, Aruba, Dutch Caribbean:Implications for the generation of continental crust[J].Lithos, 1999, 46:43-68. doi: 10.1016/S0024-4937(98)00061-9
|
[46] |
Weiberg R F, Hasalová P.Water-fluxed melting of the continental curst:A Review[J].Lithos, 2015, 212/215:158-188. doi: 10.1016/j.lithos.2014.08.021
|
[47] |
吴鸣谦, 左梦璐, 张德会, 等.TTG岩套的成因及其形成环境[J].地质论评, 2014, 60(3):503-514.
|
[48] |
谢燮, 李文明, 孙吉明, 等.新疆北山地区白山镁铁岩体LA-ICP-MS锆石U-Pb年龄、地球化学特征及其找矿意义[J].地质科技情报, 2018, 37(6):11-12.
|
[49] |
孟德磊, 贾小辉, 谢国刚, 等.粤南长蛇山分异Ⅰ型花岗岩的年代学、地球化学特征及其构造意义[J].地质科技情报, 2019, 38(4):193-204.
|
[50] |
Arth J G, Barker F, Peterman Z E, et al.Geochemistry of the gabbro-diorite-tonalite-trondhjemite suite of Southwest Finland and its implications for the origin of tonalitic and trondhjemitic magmas[J].Journal of Petrology, 1978, 19(2):289-316. doi: 10.1093/petrology/19.2.289
|
[51] |
Drummond M S, Defant M J.A model for trondhjemite-tonalitedacite genesis and crustal growth via slab melting:Archean to modern comparisons[J].Journal of Geophysical Research, 1990, 95(B13):21503-21521. doi: 10.1029/JB095iB13p21503
|
[52] |
Drummond M S, Defant M J, Kepezhinskas P K.Petrogenesis of slab-derived trondhjemite-tonalite-dacite/adakite magmas[J].Transactions of the Royal Society of Edinburgh:Earth Sciences, 1996, 87(1/2):205-215. http://journals.cambridge.org/action/displayAbstract?fromPage=online&aid=8345451&fulltextType=RA&fileId=S0263593300006611
|
[53] |
张华锋, 王浩铮, 豆敬兆, 等.华北克拉通怀安陆块新太古代低铝和高铝TTG片麻岩的地球化学特征与成因[J].岩石学报, 2015, 31(6):1518-1534. http://d.wanfangdata.com.cn/Periodical/ysxb98201506003
|
[54] |
杨坤光, 何良伦, 刘雨, 等.黔西逆冲滑脱构造及其对铅锌矿床的控制[J].地质科技通报, 2020, 39(1):149-156. http://dzkjqb.cug.edu.cn/CN/abstract/abstract9935.shtml
|
[55] |
Zong K Q, Klemd R, Yuan Y, et al.The assembly of Rodinia:The correlation of early Neoproterozoic (ca.900 Ma) high-grade metamorphism and continental arc formation in the southern Beishan Orogen, southern Central Asian Orogenic Belt (CAOB)[J].Precambrian Research, 2017, 290:32-48. doi: 10.1016/j.precamres.2016.12.010
|
[56] |
Barker F, Arth J G, Peterman Z E, et al.The 1.7- to 1.8-b.y.-old trondhjemites of southwestern Colorado and northern New Mexico:Geochemistry and depths of genesis[J].Geological Society of America Bulletin, 1976, 87(2):189-198 doi: 10.1130/0016-7606(1976)87<189:TTBTOS>2.0.CO;2
|
[57] |
Barker F.Trondhjemites: Definition, environment and hypotheses oforigin[C]//Barker F.Trondhjemites dacites and related rocks.Amsterdam: Elsevier, 1979: 1-12.
|