Citation: | Huang Yanwen, Du Yao, Xu Yu, Tao Yanqiu, Deng Yamin, Ma Teng. Source and enrichment mechanism of ammonium in shallow confined aquifer in the west of Dongting Plain[J]. Bulletin of Geological Science and Technology, 2020, 39(6): 165-174. doi: 10.19509/j.cnki.dzkq.2020.0618 |
[1] |
陈新明, 马腾, 蔡鹤生, 等.地下水氮污染的区域性调控策略[J].地质科技情报, 2013, 32(6):130-143, 149. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=dzkjqb201306020
|
[2] |
Pacheco F A L, Sanches L F.Environmental land use conflicts in catchments: A major cause of amplified nitrate in river water[J].Science of the Total Environment, 2016, 548/549:173-188. http://www.ncbi.nlm.nih.gov/pubmed/26802346
|
[3] |
Nikolenko O, Jurado A, Alberto V, et al.Isotopic composition of nitrogen species in groundwater under agriculture areas:A review[J].Science of the Total Environment, 2018, 621:1342-1415. http://www.ncbi.nlm.nih.gov/pubmed/29074237
|
[4] |
宁卓, 张翠云, 张胜.地下水铵污染及其氮同位素研究[J].南水北调与水利科技, 2011, 9(3):129-132. http://www.cnki.com.cn/Article/CJFDTotal-NSBD201103033.htm
|
[5] |
章颖, 王锦国.奎河铜山段两岸浅层地下水铵氮污染特征研究[J].中国煤炭地质, 2017, 29(8):60-66, 77. http://d.wanfangdata.com.cn/Periodical/zgmtdz201708011
|
[6] |
吕晓立, 韩占涛, 张海岭, 等.某典型化肥厂污染场地地下水中铵氮污染特征及成因[J].干旱区资源与环境, 2018, 32(12):176-182. http://www.cqvip.com/QK/96735X/201812/676633914.html
|
[7] |
World Health Organization.Guidelines for drinking water Quality[S].Geneva: WHO, 1993.
|
[8] |
Buss S R, Herbert A W, Morgan P, et al.A review of ammonium attenuation in soil and groundwater[J].Quarterly Journal of Engineering Geology and Hydrogeology, 2004, 37:347-359. http://www.researchgate.net/publication/301518618_Review_of_ammonium_attenuation_in_soil_and_groundwater
|
[9] |
Huang X P, Huang L M, Yue W Z.The characteristics of nutrients and eutrophication in the Pearl River estuary, South China[J].Marine Pollution Bulletin, 2003, 47(1/6):30-36. http://www.ncbi.nlm.nih.gov/pubmed/12787594
|
[10] |
Jiao J J, Wang Y, Cherry J A, et al.Abnormally high ammonium of natural origin in a coastal aquifer-aquitard system in the Pearl River Delta, China[J].Environmental Science & Technology, 2010, 44(19):7470-7475.
|
[11] |
Mastrocicco M, Giambastiani B M S, Colombani N.Ammonium occurrence in a salinized lowland coastal aquifer (Ferrara, Italy)[J].Hydrological Processes, 2013, 27(24):3495-3501.
|
[12] |
Norrman J, Sparrenbom C J, Berg M, et al.Tracing sources of ammonium in reducing groundwater in a well eld in Hanoi (Vietnam) by means of stable nitrogen isotope (δ15N) values[J].Applied Geochemistry, 2015, 61:248-258.
|
[13] |
胡光伟, 张明, 刘珍, 等.洞庭湖水质变化及其形成机制分析[J].水资源与水工程学报, 2019, 30(3):39-45. http://www.cnki.com.cn/Article/CJFDTotal-XBSZ201903006.htm
|
[14] |
刘长明, 皮建高, 肖江.洞庭湖区浅层地下水环境质量综合分区评价[J].今日科苑, 2009(15):155-156. http://www.cnki.com.cn/Article/CJFDTotal-JRKR200915124.htm
|
[15] |
王璨, 姚腾飞, 陈亮晶, 等.江汉-洞庭平原地下水资源及其环境问题调查评价(湖南)报告[R].长沙: 湖南省地质调查院, 2016.
|
[16] |
覃红燕.近50余年洞庭湖水文环境演变及其成因分析[D].长沙: 湖南农业大学, 2013.
|
[17] |
连生土.洞庭湖区浅层地下水环境质量评价研究[D].湖南湘潭: 湖南科技大学, 2011.
|
[18] |
王军霞.江汉-洞庭平原流域水文模型与地下水数值模型耦合模拟研究[D].武汉: 中国地质大学(武汉), 2015.
|
[19] |
中国地质调查局武汉地质调查中心.江汉-洞庭平原地下水资源及其环境问题调查评价第四纪地质图(1: 25万)[R].武汉: 中国地质调查局武汉地质调查中心, 2015.
|
[20] |
刘伟江, 袁祥美, 张雅, 等.贵阳市岩溶地下水水化学特征及演化过程分析[J].地质科技情报, 2018, 37(6):245-251. http://www.cnki.com.cn/Article/CJFDTotal-DZKQ201806031.htm
|
[21] |
郭清海, 王焰新.水文地球化学信息对岩溶地下水流动系统特征的指示意义:以山西神头泉域为例[J].地质科技情报, 2006, 25(3):85-88. http://www.cnki.com.cn/Article/CJFDTotal-DZKQ200603015.htm
|
[22] |
沈帅, 马腾, 杜尧, 等.江汉平原东部浅层地下水氮的空间分布特征[J].环境科学与技术, 2018, 41(2):47-56. http://www.cnki.com.cn/Article/CJFDTotal-FJKS201802008.htm
|
[23] |
McArthur J M, Sikdar P K, Hoque M A, et al.Waste-water impacts on groundwater:Cl/Br ratios and implications for arsenic pollution of groundwater in the Bengal Basin and Red River Basin, Vietnam[J].Science of the Total Environment, 2012, 437:390-402.
|
[24] |
邬建勋, 余倩, 蒋庆肯, 等.江汉平原高砷地下水与含水层沉积物的地球化学特征[J].地质科技情报, 2019, 38(1):250-257. http://www.cqvip.com/QK/93477A/20191/68907581504849574849485056.html
|
[25] |
McArthur J M, Ravenscroft P, Safiulla S, et al.Arsenic in groundwater:Testing pollution mechanisms for sedimentary aquifers in Bangladesh[J].Water Resources Research, 2001, 37(1):109-117. doi: 10.1029/2000WR900270/full
|
[26] |
王佳琪, 马瑞, 孙自永.地表水与地下水相互作用带中氮素污染物的反应迁移机理及模型研究进展[J].地质科技情报, 2019, 38(4):270-280. http://www.cnki.com.cn/Article/CJFDTotal-DZKQ201904029.htm
|
[27] |
Du Y, Ma T, Deng Y M, et al.Sources and fate of high levels of ammonium in surface water and shallow groundwater of the Jianghan Plain, Central China[J].Environmental Science:Processes & Impacts, 2017, 19:161-172.
|
[28] |
Li X, Tang C Y, Cao Y J, et al.Carbon, nitrogen and sulfur isotopic features and the associated geochemical processes in a coastal aquifer system of the Pearl River Delta, China[J].Journal of Hydrology, 2019, 575:986-998.
|
[29] |
Lingle D A, Kehew A E, Krishnamurthy R V.Use of nitrogen isotopes and other geochemical tools to evaluate the source of ammonium in a confined glacial drift aquifer, Ottawa County, Michigan, USA[J].Applied Geochemistry, 2017, 78:334-342. http://www.sciencedirect.com/science/article/pii/S0883292717300124
|
[30] |
Linderfelt W R, Turner J V.Interaction between shallow groundwater, saline surface water and nutrient discharge in a seasonal estuary: The Swan-Canning system[J].Hydrological Processes, 2001, 15(13):2631-2653.
|
[31] |
Ortega-Guerrero A.Origin and geochemical evolution of groundwater in a closed-basin clayey aquitard, Northern Mexico[J].Journal of Hydrology, 2003, 284(1):26-44.
|
[32] |
Du Y, Ma T, Deng Y M, et al.Hydrogeochemical evidences for targeting sources of safe groundwater supply in arsenic-affected multi-level aquifer systems[J].The Science of the Total Environment, 2018, 645:1159-1171.
|