Volume 39 Issue 6
Nov.  2020
Turn off MathJax
Article Contents
Ma Yao, Zhao Jiangnan, Liao Shili. Application of fuzzy analytic hierarchy process to mineral prospectivity mapping of polymetallic sulfide deposits in the Southwest Indian ridge between 46° to 52°E[J]. Bulletin of Geological Science and Technology, 2020, 39(6): 75-82. doi: 10.19509/j.cnki.dzkq.2020.0622
Citation: Ma Yao, Zhao Jiangnan, Liao Shili. Application of fuzzy analytic hierarchy process to mineral prospectivity mapping of polymetallic sulfide deposits in the Southwest Indian ridge between 46° to 52°E[J]. Bulletin of Geological Science and Technology, 2020, 39(6): 75-82. doi: 10.19509/j.cnki.dzkq.2020.0622

Application of fuzzy analytic hierarchy process to mineral prospectivity mapping of polymetallic sulfide deposits in the Southwest Indian ridge between 46° to 52°E

doi: 10.19509/j.cnki.dzkq.2020.0622
  • Received Date: 27 Feb 2020
  • As a product of hydrothermal activity, seabed polymetallic sulfides have good prospects for mineralization and development potential, and it has become the focus of marine mineral exploration in various countries.Fuzzy analytic hierarchy process (FAHP), which combines fuzzy mathematics with expert knowledge, is a typical knowledge-driven quantitative prediction method for mineral resources.In this paper, the method is used to process the Polymetallic sulfide in the southwest Indian ridge.The weights of the nine evidence layers are calculated by combining expert experience.Finally, the gamma operator is used to synthesize the final prospective map.Through prediction-area (P-A) plot analysis, the optimal γ for FAHP was determined as 0.9.The threshold corresponding to different mineralization probability levels was determined by C-A fractal method, and the prediction performance of the method was evaluated.The results showed that in the prediction model based on FAHP, the area under the ROC curve was 0.887 and 90.5% of the known hydrothermal point and seismic point were predicted.Therefore, the method can effectively predict the favorable mineralization of the study area and can provide directions for future prospecting.

     

  • loading
  • [1]
    陶春辉, 李怀明, 金肖兵, 等.西南印度洋脊的海底热液活动和硫化物勘探[J].科学通报, 2014, 59(19):1812-1822.
    [2]
    Rona P A, Scott S D.A special issue on sea-floor hydrothermal mineralization:New perspectives, preface[J].Economic Geology, 1993, 88(8):1935-1976. doi: 10.2113/gsecongeo.88.8.1935
    [3]
    Pan G, Harris D P.Information synthesis for mineral exploration[M].New York:Oxford Univ. Press, 2000.
    [4]
    Carranza E J M, van Ruitenbeek F J A, Hecker C, et al.Knowledge-guided data-driven evidential belief modeling of mineral prospectivity in Cabo de Gata, SE Spain[J].International Journal of Applied Earth Observation and Geoinformation, 2008, 10(3):374-387. doi: 10.1016/j.jag.2008.02.008
    [5]
    邵珂, 陈建平, 任梦依, 印度洋中脊多金属硫化物矿产资源定量预测与评价[J].海洋地质与第四纪地质, 2015, 35(5):125-133.
    [6]
    Lin N, Chen Y, Lu L.Mineral potential mapping using a conjugate gradient logistic regression model[J].Natural Resources Research, 2019, 29(4):1-16.
    [7]
    Zuo R, Carranza E J M.Support vector machine:A tool for mapping mineral prospectivity[J].Computers & Geosciences, 2011, 37(12):1967-1975. http://dl.acm.org/citation.cfm?id=2073002
    [8]
    Porwal A, Carranza E J M, Hale M.Artificial neural networks for mineral-potential mapping:A case study from Aravalli Province[J].Natural Resources Research, 2003, 12(3):155-171. doi: 10.1023/A:1025171803637
    [9]
    Rodriguez-Galiano V, Mendes M P, Garcia-Soldado M J, et al.Predictive modeling of groundwater nitrate pollution using random forest and multisource variables related to intrinsic and specific vulnerability:A case study in an agricultural setting (Southern Spain)[J].Science of the Total Environment, 2014, 476-477:189-206. doi: 10.1016/j.scitotenv.2014.01.001
    [10]
    Carranza E J M, Hale M.Evidential belief functions for data-driven geologically constrained mapping of gold potential, Baguio district, Philippines[J].Ore Geology Reviews, 2003, 22(1/2):117-132. http://www.sciencedirect.com/science/article/pii/S0169136802001117
    [11]
    Bonham-Carter G F.Geographic information systems for geoscientists-modeling with GIS[J].Computer Methods in the Geoscientists, 1994, 13:398.
    [12]
    Najafi A, Karimpour M H, Ghaderi M.Application of fuzzy AHP method to IOCG prospectivity mapping:A case study in Taherabad prospecting area, eastern Iran[J].International Journal of Applied Earth Observation and Geoinformation, 2014, 33:142-154. doi: 10.1016/j.jag.2014.05.003
    [13]
    Yousefi M, Carranza E J M.Union score and fuzzy logic mineral prospectivity mapping using discretized and continuous spatial evidence values[J].Journal of African Earth Sciences, 2017, 128:47-60. doi: 10.1016/j.jafrearsci.2016.04.019
    [14]
    邢学文, 胡光道, 王正海, 等.模糊逻辑法在云南中甸地区铜矿潜力预测中的应用[J].地质科技情报, 2006, 25(6):55-60. http://d.wanfangdata.com.cn/Periodical/dzkjqb200606009
    [15]
    Carranza E J M, Mangaoang J C, Hale M.Application of mineral exploration models and GIS to generate mineral potential maps as input for optimum land-use planning in the Philippines[J].Natural Resources Research, 1999, 8(2):165-173. doi: 10.1023/A:1021846820568
    [16]
    Bonham-Carter G F.Geographic information systems for geoscientists:Modelling with GIS[M].Amsterdam Netherlands:Elsevier, 2014.
    [17]
    Pazand K, Hezarkhani A, Ghanbari Y.Fuzzy analytical hierarchy process and GIS for predictive Cu porphyry potential mapping:A case study in Ahar-Arasbaran Zone (NW, Iran)[J].Arabian Journal of Geosciences, 2014, 7(1):241-251. doi: 10.1007/s12517-012-0774-4
    [18]
    彭省临, 王颖, 杜瑞峰.模糊综合评判模型在隐伏矿定位预测中的应用[J].大地构造与成矿学, 2009, 33(2):253-258.
    [19]
    Zhou K, Zhang N.Mineral prospectivity mapping for porphyry-type and hydrothermal vein-type copper deposits using fuzzy analytical hierarchy process and geographic information system[J].Journal of Intelligent & Fuzzy Systems, 2016, 31(6):3143-3153.
    [20]
    黄大松, 张霄宇, 张国堙, 等.西南印度洋中脊48.6°~51.7°E沉积物地球化学特征[J].地质科技情报, 2016, 35(1):22-29. http://www.cnki.com.cn/Article/CJFDTotal-DZKQ201601004.htm
    [21]
    German C R, Baker E T, Mevel C, et al.Hydrothermal activity along the southwest Indian ridge[J].Nature, 1998, 395:490-493. doi: 10.1038/26730
    [22]
    曹红, 曹志敏.西南印度洋中脊海底热液活动[J].海洋地质与第四纪地质, 2011, 31(1):67-75.
    [23]
    Zhou H, Dick H J B.Thin crust as evidence for depleted mantle supporting the Marion Rise[J].Nature, 2013, 494:195-201. doi: 10.1038/nature11842
    [24]
    Dick H J B.Abyssal peridotites, very slow spreading ridges and ocean ridge magmatism[J].Geological Society, London, Special Publications, 1989, 42(1):71-105. doi: 10.1144/GSL.SP.1989.042.01.06
    [25]
    Tao C, Li H, Jin X, et al.Seafloor hydrothermal activity and polymetallic sulfide exploration on the southwest Indian ridge[J].Chinese Science Bulletin, 2014, 59(19):2266-2276. doi: 10.1007/s11434-014-0182-0
    [26]
    陈建平, 任梦依, 方捷, 等.洋中脊多金属硫化物成矿定量预测[M].北京:科学出版社, 2017.
    [27]
    贾晓青, 刘建, 罗明明, 等.基于改进的DRASTIC模型对香溪河典型岩溶流域地下水脆弱性评价[J].地质科技情报, 2019, 38(4):255-261.
    [28]
    周红, 朱芳冰.基于优化组合权-灰关联-TOPSIS的页岩气有利区优选[J].地质科技情报, 2018, 37(5):106-113.
    [29]
    吴千然, 牟中海, 丁晓军, 等.尕斯库勒油田N21油藏砂质辫状河储层构型研究[J].地质科技情报, 2019, 38(2):151-160.
    [30]
    Houshyar E, SheikhDavoodi M J, Almassi M, et al.Silage corn production in conventional and conservation tillage systems.Part Ⅰ:Sustainability analysis using combination of GIS/AHP and multi-fuzzy modeling[J].Ecological Indicators, 2014, 39:102-114. doi: 10.1016/j.ecolind.2013.12.002
    [31]
    Calabrese A, Costa R, Levialdi N, et al.Integrating sustainability into strategic decision-making:A fuzzy AHP method for the selection of relevant sustainability issues[J].Technological Forecasting and Social Change, 2019, 139:155-168. doi: 10.1016/j.techfore.2018.11.005
    [32]
    Chang D Y.Applications of the extent analysis method on fuzzy AHP[J].European Journal of Operational Research, 1996, 95(3):649-655. doi: 10.1016/0377-2217(95)00300-2
    [33]
    Satty T L.The analytic hierarchy process[M].New York:McGraw-Hill Inc, 1980.
    [34]
    Cheng Q, Agterberg F P, Ballantyne S B.The separation of geochemical anomalies from background by fractal methods[J].Journal of Geochemical Exploration, 1994, 51(2):109-130. doi: 10.1016/0375-6742(94)90013-2
    [35]
    Zuo R, Carranza E J M, Wang J.Spatial analysis and visualization of exploration geochemical data[J].Earth Science Reviews, 2016, 158:9-18. doi: 10.1016/j.earscirev.2016.04.006
    [36]
    Zuo R, Wang J.ArcFractal:An ArcGIS add-in for processing geoscience data using fractal/multifractal models[J].Natural Resources Research, 2019, 1:1-10.
    [37]
    Nykänen V, Lahti I, Niiranen T, et al.Receiver operating characteristics (ROC) as validation tool for prospectivity models:A magmatic Ni-Cu case study from the Central Lapland Greenstone Belt, Northern Finland[J].Ore Geology Reviews, 2015, 71:853-860. doi: 10.1016/j.oregeorev.2014.09.007
    [38]
    Kannan R, Vasanthi V.Machine learning algorithms with ROC curve for predicting and diagnosing the heart disease[M]//Anon.Soft computing and medical bioinformatics.Singapore: Springer, 2019: 63-72.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article Views(541) PDF Downloads(3544) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return