Volume 40 Issue 1
Jan.  2021
Turn off MathJax
Article Contents
Yu Yongshun, Jiao Liangxuan, Ouyang Guang, Hu Jinwu, Liu Chongping, Zhang Xiong, Wan Liangpeng, Li Guo, She Zhenbing, Wang Tuanle. Hydrothermal dolostones in the Shiqi quarry of Wudongde Hydropower Station, Yunnan[J]. Bulletin of Geological Science and Technology, 2021, 40(1): 36-48. doi: 10.19509/j.cnki.dzkq.2021.0010
Citation: Yu Yongshun, Jiao Liangxuan, Ouyang Guang, Hu Jinwu, Liu Chongping, Zhang Xiong, Wan Liangpeng, Li Guo, She Zhenbing, Wang Tuanle. Hydrothermal dolostones in the Shiqi quarry of Wudongde Hydropower Station, Yunnan[J]. Bulletin of Geological Science and Technology, 2021, 40(1): 36-48. doi: 10.19509/j.cnki.dzkq.2021.0010

Hydrothermal dolostones in the Shiqi quarry of Wudongde Hydropower Station, Yunnan

doi: 10.19509/j.cnki.dzkq.2021.0010
  • Received Date: 08 Jan 2020
  • The Wudongde Hydropower Station in Yunan is the third hydropower station in China with a capacity of over 10 million kilowatts.The artificial aggregate used in its construction is derived from the limestone of the Mesoproterozoic Luoxue Formation of downstream the dam site.However, both limestone and dolostone are found in the aggregate survey and mining yard, meanwhile the lithological boundary between cross cuts the stratum.This paper focuses on the limestone-dolomite transition zone and a dolomite bulge remaining in the aggregate mining yard.Detailed geological survey, petrological work and geochemical analysis have been conducted on the samples of the research area.The results show that: ①Morphological features and spatial relationships of the carbonate minerals suggest that the dolostones are formed by dolomitization of limestone precursors. ②The development of zebra structure, saddle dolomite and associated sulfides and carbonaceous material is consistent with hydrothermal dolomitization. ③Fluid inclusions in the saddle dolomite yield homogenization temperatures between 183 and 215 ℃, which are significantly higher than those of fluid inclusions in the surrounding calcite(102-152 ℃).The dolostones are generally depleted in 18O(δ18O=-13.3‰ to -7.8‰), with the saddle dolomites have the lowest δ18O value(-13.3‰), which is consistent with direct precipitation of dolomite from hydrothermal fluids.The other dolomites, which show lower homogenization temperatures and higher δ18O, are probably related to less influence by the hydrothermal fluids. ④The near-vertical strata and the presence of fractures in the Shiqi area might have provided channels for the migration of hydrothermal fluids, while the overlying dolostones of Sinian Dengying Formation probably have acted as a cap layer, allowing prolonged reactions between the hydrothermal fluids and surrounding limestones.The migration direction of the hydrothermal fluids determines the distribution of the hydrothermal dolostones.

     

  • loading
  • [1]
    Davies G R, Smith L.Structurally controlled hydrothermal dolomite reservoir facies:An overview[J].AAPG Bulletin, 2006, 90(11):1641-1690. doi: 10.1306/05220605164
    [2]
    Gregg J M, Bish D L, Kaczmarek S E, et al.Mineralogy, nucleation and growth of dolomite in the laboratory and sedimentary environment:A review[J].Sedimentology, 2015, 62(6):1749-1769. doi: 10.1111/sed.12202
    [3]
    Lapponi F, Bechstadt T, Boni M, et al.Hydrothermal dolomitization in a complex geodynamic setting(Lower Palaeozoic, northern Spain)[J].Sedimentology, 2014, 61(2):411-443. doi: 10.1111/sed.12060
    [4]
    Morrow D W, Immenhauser A.Zebra and boxwork fabrics in hydrothermal dolomites of northern Canada:Indicators for dilational fracturing, dissolution or in situ, replacement?[J].Sedimentology, 2014, 61(4):915-951. doi: 10.1111/sed.12094
    [5]
    Warren J.Dolomite:Occurrence, evolution and economically important associations[J].Earth-Science Reviews, 2000, 52(1/3):1-81. http://www.sciencedirect.com/science/article/pii/S0012825200000222
    [6]
    Land L S.Failure to precipitate dolomite at 25℃ from dilute solution despite 1000-fold over saturation after 32 years[J].Aquatic Geochemistry, 1998, 4(3/4):361-368. doi: 10.1023/A:1009688315854
    [7]
    李波, 颜佳新, 刘喜停, 等.白云岩有机成因模式:机制、进展与意义[J].古地理学报, 2010, 12(6):699-710. https://www.cnki.com.cn/Article/CJFDTOTAL-GDLX201006009.htm
    [8]
    由雪莲, 孙枢, 朱井泉, 等.微生物白云岩模式研究进展[J].地学前缘, 2011, 18(4):52-64. https://www.cnki.com.cn/Article/CJFDTOTAL-DXQY201104004.htm
    [9]
    于炳松, 赖兴运, 高志前.克拉2气田砂岩储层中成岩方解石-白云石的平衡及其对储层质量的影响[J].自然科学进展, 2007, 17(3):339-345. doi: 10.3321/j.issn:1002-008X.2007.03.008
    [10]
    张亦凡, 马怡飞, 姚奇志, 等."白云石问题"及其实验研究[J].高校地质学报, 2015, 21(3):395-406. https://www.cnki.com.cn/Article/CJFDTOTAL-GXDX201503004.htm
    [11]
    Rodriguez-Blanco J D, Shaw S, Benning L G.A route for the direct crystallization of dolomite[J].American Mineralogist, 2015, 100(5/6):1172-1181. http://onlinelibrary.wiley.com/resolve/reference/PMED?id=16977395
    [12]
    刘志波, 邢凤存, 胡华蕊, 等.四川盆地下奥陶统桐梓组白云岩多元成因[J].地球科学, 2020, 43(11):1-19
    [13]
    包洪平, 杨帆, 蔡郑红, 等.鄂尔多斯盆地奥陶系白云岩成因及白云岩储层发育特征[J].天然气工业, 2017, 37(1):32-45. https://www.cnki.com.cn/Article/CJFDTOTAL-TRQG201701006.htm
    [14]
    侯中帅, 陈世悦, 刘惠民, 等.东营凹陷热液流体活动及其油气地质意义[J].中国矿业大学学报, 2019, 48(5):1090-1101. https://www.cnki.com.cn/Article/CJFDTOTAL-ZGKD201905017.htm
    [15]
    刘建强, 郑浩夫, 刘波, 等.川中地区中二叠统茅口组白云岩特征及成因机理[J].石油学报, 2017, 38(4):386-398. https://www.cnki.com.cn/Article/CJFDTOTAL-SYXB201704003.htm
    [16]
    罗鹏, 刘存革, 刘永立, 等.塔河油田下寒武统肖尔布拉克组储层发育特征及控制因素探讨[J].地质科技情报, 2019, 38(1):152-159. https://www.cnki.com.cn/Article/CJFDTOTAL-DZKQ201901016.htm
    [17]
    胡作维, 李云, 韩信, 等.碳酸盐岩储层中热液流体改造作用研究进展[J].地质科技情报, 2015, 34(5):58-65. https://www.cnki.com.cn/Article/CJFDTOTAL-DZKQ201505010.htm
    [18]
    陈娅娜, 沈安江, 潘立银, 等.微生物白云岩储集层特征、成因和分布:以四川盆地震旦系灯影组四段为例[J].石油勘探与开发, 2017, 44(5):704-715. https://www.cnki.com.cn/Article/CJFDTOTAL-SKYK201705006.htm
    [19]
    赵文智, 沈安江, 乔占峰, 等.白云岩成因类型、识别特征及储集空间成因[J].石油勘探与开发, 2018, 45(6):923-935. https://www.cnki.com.cn/Article/CJFDTOTAL-SKYK201806002.htm
    [20]
    王团乐, 刘冲平, 郝文忠, 等.乌东德大坝混凝土骨料料源选择勘察研究[J].人民长江, 2014, 45(20):144-146. https://www.cnki.com.cn/Article/CJFDTOTAL-RIVE2014S2046.htm
    [21]
    Wang W, Zhou M F.Provenace and tectonic setting of the Paleo- to Mesoproterozoic Dongchuan Group in the southwestern Yangtze Block, South China:Implication for the break up of the supercontinent Columbia[J].Tectonophysics, 2014, 610(1):110-127. http://www.sciencedirect.com/science/article/pii/S0040195113006537
    [22]
    尹福光, 孙志明, 张璋.会理-东川地区中元古代地层-构造格架[J].地质论评, 2011, 57(6):12-20. https://www.cnki.com.cn/Article/CJFDTOTAL-DZLP201106003.htm
    [23]
    卢焕章.流体包裹体[M].北京:科学出版社, 2004.
    [24]
    池国祥, 赖健清.流体包裹体在矿床研究中的作用[J].矿床地质, 2009, 28(6):850-855. doi: 10.3969/j.issn.0258-7106.2009.06.013
    [25]
    池国祥, 卢焕章.流体包裹体组合对测温数据有效性的制约及数据表达方法[J].岩石学报, 2008, 24(9):1945-1953. https://www.cnki.com.cn/Article/CJFDTOTAL-YSXB200809001.htm
    [26]
    朱丽芬, 陈红汉, 丰勇, 等.塔北于奇地区奥陶系碳酸盐岩成岩环境分析:来自于流体包裹体的证据[J].岩性油气藏, 2013, 25(4):38-43, 49. doi: 10.3969/j.issn.1673-8926.2013.04.008
    [27]
    Hall D L, Sterner S M, Bodnar R J.Freezing point depression of NaCl-KCl-H2O solutions[J].Economic Geology, 1988, 83(1):197-202. doi: 10.2113/gsecongeo.83.1.197
    [28]
    张理刚.稳定同位素有地质科学中的应用[M].西安:陕西科学技术出版社, 1985.
    [29]
    Sirat M, Al-Aasm I S, Morad S, et al.Saddle dolomite and calcite cements as records of fluid flow during basin evolution:Paleogene carbonates, United Arab Emiratess[J].Marine and Petroleum Geology, 2016, 74:71-91. doi: 10.1016/j.marpetgeo.2015.11.005
    [30]
    Veizer J, Ala D, Azmy K, et al.87Sr/86Sr, δ18C and δ18O evolution of Phanerozoic seawater[J].Chemical Geology, 1999, 161(30):59-88. http://adsabs.harvard.edu/cgi-bin/nph-data_query?link_type=ABSTRACT&bibcode=1999ChGeo.161...59V
    [31]
    桑隆康, 马昌前.岩石学:第2版[M].北京:地质出版社, 2012.
    [32]
    陈彦华, 刘莺, 孙妥.白云化过程中岩石孔隙体积的变化[J].石油实验地质, 1985, 7(1):29-37. https://www.cnki.com.cn/Article/CJFDTOTAL-SYSD198501005.htm
    [33]
    张学丰, 刘波, 蔡忠贤, 等.白云岩化作用与碳酸盐岩储层物性[J].地质科技情报, 2010, 29(3):79-85. doi: 10.3969/j.issn.1000-7849.2010.03.012
    [34]
    Barale L, Bertok C, Salih Talabani N, et al.Very hot, very shallow hydrothermal dolomitization:An example from the Maritime Alps(north-west Italy - south-east France)[J].Sedimentology, 2016, 63(7):2037-2065. doi: 10.1111/sed.12294
    [35]
    Nader F H, Swennen R, Ellam R M.Field geometry, petrography and geochemistry of a dolomitization front(Late Jurassic, central Lebanon)[J].Sedimentology, 2007, 54(5):1093-1120. doi: 10.1111/j.1365-3091.2007.00874.x
    [36]
    Lucia F J, Major R P.Porosity evolution through hypersaline reflux dolomitization[M].Dolomites:Blackwell Publishing Ltd., 1994.
    [37]
    Wilson E N, Hardie L A, Phillips O M.Dolomitization front geometry, fluid flow patterns, and the origin of massive dolomite; the Triassic Latemar buildup, northern Italy[J].American Journal of Science, 1990, 290:741-796. doi: 10.2475/ajs.290.7.741
    [38]
    冯明友, 强子同, 沈平, 等.四川盆地高石梯-磨溪地区震旦系灯影组热液白云岩证据[J].石油学报, 2016, 37(5):587-598. https://www.cnki.com.cn/Article/CJFDTOTAL-SYXB201605003.htm
    [39]
    金民东, 谭秀成, 李毕松, 等.四川盆地震旦系灯影组白云岩成因[J].沉积学报, 2019, 37(3):443-454. https://www.cnki.com.cn/Article/CJFDTOTAL-CJXB201903001.htm
    [40]
    刘伟, 黄擎宇, 王坤, 等.深埋藏阶段白云岩化作用及其对储层的影响:以塔里木盆地下古生界白云岩为例[J].天然气地球科学, 2016, 27(5):772-779. https://www.cnki.com.cn/Article/CJFDTOTAL-TDKX201605003.htm
    [41]
    邵小明, 文山师, 刘存革, 等.塔河油田下寒武统肖尔布拉克组构造控制热液白云岩储层分布与勘探前景[J].地质科技情报, 2017, 36(2):151-155. https://www.cnki.com.cn/Article/CJFDTOTAL-DZKQ201702019.htm
    [42]
    苏中堂, 陈洪德, 徐粉燕, 等.鄂尔多斯盆地马家沟组白云岩地球化学特征及白云岩化机制分析[J].岩石学报, 2011, 27(8):2230-2238. https://www.cnki.com.cn/Article/CJFDTOTAL-YSXB201108002.htm
    [43]
    肖晖, 赵靖舟.鄂尔多斯盆地靖边气田奥陶系马家沟组的阴极发光特征及白云岩化[J].西安石油大学学报:自然科学版, 2013, 28(4):1-7. https://www.cnki.com.cn/Article/CJFDTOTAL-XASY201304004.htm
    [44]
    曹佳琪, 张道军, 翟世奎, 等.西沙岛礁白云岩化特征与成因模式分析[J].海洋学报, 2016, 38(11):125-139. doi: 10.3969/j.issn.0253-4193.2016.11.012
    [45]
    赫云兰, 刘波, 秦善.白云石化机理与白云岩成因问题研究[J].北京大学学报:自然科学版, 2010, 46(6):1010-1020. https://www.cnki.com.cn/Article/CJFDTOTAL-BJDZ201006023.htm
    [46]
    Radke B M, Mathis R L.On the formation and occurrence of saddle dolomite[J].Journal of Sedimentary Petrology, 1980, 50:1149-1168. http://adsabs.harvard.edu/abs/1981JSedR..51.1350Z
    [47]
    胡进武, 刘迎雨, 杨宁.乌东德水电站工程施期料场优化分析研究[J].中国水利, 2017(增刊1):126-128, 135. https://www.cnki.com.cn/Article/CJFDTOTAL-SLZG2017S1034.htm
    [48]
    冉光俊.白云岩骨料碾压混凝土施工质量控制[J].陕西水利, 2017, 93(增刊1):202-203. https://www.cnki.com.cn/Article/CJFDTOTAL-SXSN2017S1093.htm
    [49]
    何真, 陈晓润, 蔡新华.微切削模式下岩石骨料的耐磨性能及影响因素试验研究[J].水力发电学报, 2017, 36(6):86-93. https://www.cnki.com.cn/Article/CJFDTOTAL-SFXB201706011.htm
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article Views(791) PDF Downloads(5232) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return