Volume 40 Issue 3
May  2021
Turn off MathJax
Article Contents
Liu Yanhua, Chen Honghan, Wang Yanfei, Han Jinyang, Li Qian. Diagenetic effect of mantle-derived CO2 charge to clay minerals in the Baiyun-Liwan deepwater area of the Pearl River Mouth Basin in South China Sea[J]. Bulletin of Geological Science and Technology, 2021, 40(3): 85-95. doi: 10.19509/j.cnki.dzkq.2021.0020
Citation: Liu Yanhua, Chen Honghan, Wang Yanfei, Han Jinyang, Li Qian. Diagenetic effect of mantle-derived CO2 charge to clay minerals in the Baiyun-Liwan deepwater area of the Pearl River Mouth Basin in South China Sea[J]. Bulletin of Geological Science and Technology, 2021, 40(3): 85-95. doi: 10.19509/j.cnki.dzkq.2021.0020

Diagenetic effect of mantle-derived CO2 charge to clay minerals in the Baiyun-Liwan deepwater area of the Pearl River Mouth Basin in South China Sea

doi: 10.19509/j.cnki.dzkq.2021.0020
  • Received Date: 24 Sep 2020
  • During petroleum exploration in the Baiyun-Liwan deep-water area of the Pearl River Mouth Basin (PRMB), South China Sea, a huge number of CO2 gas reservoirs has been met. Therefore, how to avoid the high CO2 risk has become a big challenge now. In this paper, the X-Ray diffraction (XRD) of clay minerals in the sandstone filled with CO2, microthermometry of fluid inclusions and isotopes of noble gas were used for analysis. The results show that the origin of inorganic CO2 is magmatic. The effects of mantle-derived CO2 on clay minerals are the inversion of clay mineral order degree and the formation of a largeamount of authigenic kaolinite. Moreover, the clay mineral assemblage was divided into three types based on the of XRD analysis data in CO2 wells. Finally, two patterns of CO2 migration and accumulation in the Zhujiang and Zhuhai Formations were summarized: (1) the mantle-derived CO2 migrates vertically upward through the deep faults which connected with the mafic igneous rocks, and (2) lateral long-distance migration through connecting sand bodies after vertical upward migration. These results have certain guiding significance for avoiding the risk of high CO2 in the future exploration in the deep-water area of PRMB, South China Sea.

     

  • loading
  • [1]
    Eberl D, Hower J. Kinetics of illite formation[J]. Geological Society of America Bulletin, 1976, 87(2): 1326-1330. http://bulletin.geoscienceworld.org/content/87/9/1326
    [2]
    Yun J, Wu H, Feng Z, et al. CO2 gas emplacement age in the Songliao Basin: Insight from volcanic quartz 40Ar-39Ar stepwise crushing[J]. Science Bulletin, 2010, 55(17): 1795-1799. doi: 10.1007/s11434-010-3082-y
    [3]
    Bethke C M, Vergo N, Altaner S P. Pathways of smectite illitization[J]. Clays and Clay Minerals, 1986, 34(2): 125-135. doi: 10.1346/CCMN.1986.0340203
    [4]
    Hoffman J, Hower J. Clay mineral assemblages as low grade metamorphic geothermometers: Application to the thrust faulted disturbed belt of Montana, U.S. A[M]. Oklahoma: SEPM Special Publications, 1979.
    [5]
    Hower J, Eslinger E V, Hower M E, et al. Mechanism of burial metamorphism of argillaceous sediment: 1. Mineralogical and chemical evidence[J]. Geological Society of America Bulletin, 1976, 87(5): 725-737. doi: 10.1130/0016-7606(1976)87<725:MOBMOA>2.0.CO;2
    [6]
    Moore D M, Reynolds R C. X-ray diffraction and the identification and analysis of clay minerals[M]. New York: Oxford University Press, 1989.
    [7]
    Davies G R, Smith L B. Structurally controlled hydrothermal dolomite reservoir facies: An overview[J]. AAPG Bulletin, 2011, 90(11): 1641-1690. http://www.nrcresearchpress.com/servlet/linkout?suffix=rg11/ref11&dbid=16&doi=10.1139%2FE09-019&key=10.1306%2F05220605164
    [8]
    陈红汉, 米立军, 刘妍鷨, 等. 珠江口盆地深水区CO2成因、分布规律与风险带预测[J]. 石油学报, 2017, 38(2): 119-134. https://www.cnki.com.cn/Article/CJFDTOTAL-SYXB201702001.htm

    Chen H H, Mi L J, Liu Y H, et al. Genesis, distribution and risk belt prediction of CO2 in deep-water area in the Pearl River Mouth Basin[J]. Acta Petrolei Sinica, 2017, 38(2): 119-134(in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-SYXB201702001.htm
    [9]
    张鑫, 陈红汉, 龙昭, 等. 泌阳凹陷北部缓坡带核桃园组油气运聚成藏过程[J]. 地质科技通报, 2020, 39(3): 140-149. https://www.cnki.com.cn/Article/CJFDTOTAL-DZKQ202003018.htm

    Zhang X, Chen H H, Long Z, et al. Hydrocarbon migration and accumulation of Hetaoyuan Formation in the northern gentle slope of Biyang Depression[J]. Bulletin of Geological Science and Technology, 2020, 39(3): 140-149(in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-DZKQ202003018.htm
    [10]
    李智, 张志业, 何登发, 等. 南襄盆地泌阳凹陷与南阳凹陷油气地质特征类比及勘探启示[J]. 地质科技通报, 2020, 39(2): 79-89. https://www.cnki.com.cn/Article/CJFDTOTAL-DZKQ202002009.htm

    Li Z, Zhang Z Y, He D F, et al. Comparison in petroleum geology between Biyang Depression and Nanyang Depression in Nanxiang Basin and its exploration significance[J]. Bulletin of Geological Science and Technology, 2020, 39(2): 79-89(in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-DZKQ202002009.htm
    [11]
    刁慧, 邹玮, 李宁, 等. 东海盆地西湖凹陷武云亭构造油气来源与成藏模式[J]. 地质科技通报, 2020, 39(3): 110-119. https://www.cnki.com.cn/Article/CJFDTOTAL-DZKQ202003015.htm

    Diao H, Zou W, Li N, et al. Hydrocarbon origin and reservoir forming model of Wuyunting structure in Xihu Depression, East China Sea Basin[J]. Bulletin of Geological Science and Technology, 2020, 39(3): 110-119(in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-DZKQ202003015.htm
    [12]
    刘妍鷨, 陈红汉, 苏奥, 等. 从含油气检测来洞悉琼东南盆地东部发育始新统烃源岩的可能性[J]. 地球科学, 2016, 41(9): 1539-1547. https://www.cnki.com.cn/Article/CJFDTOTAL-DQKX201609009.htm

    Liu Y H, Chen H H, Su A, et al. Eocene source rock determination in Qiongdongnan Basin, the South China Sea: a hydrocarbon detection perspective[J]. Earth Science, 2016, 41(9): 1539-1547(in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-DQKX201609009.htm
    [13]
    任建业, 庞雄, 雷超, 等. 被动陆缘洋陆转换带和岩石圈伸展破裂过程分析及其对南海陆缘深水盆地研究的启示[J]. 地学前缘, 2015, 22(1): 102-114. https://www.cnki.com.cn/Article/CJFDTOTAL-DXQY201501011.htm

    Ren J Y, Pang X, Lei C, et al. Ocean and continent transition in passive continental margins and analysis of lithospheric extension and breakup process: Implication for research of the deepwater basins in the continental margins of South China Sea[J]. Earth Science Frontiers, 2015, 22(1): 102-114(in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-DXQY201501011.htm
    [14]
    米立军, 柳保军, 何敏, 等. 南海北部陆缘白云深水区油气地质特征与勘探方向[J]. 中国海上油气, 2016, 28(2): 10-12. https://www.cnki.com.cn/Article/CJFDTOTAL-ZHSD201602002.htm

    Mi L J, Liu B J, He M, et al. Petroleum geology characteristics and exploration direction in Baiyun deep water area, northern continental margin of the South China Sea[J]. China Offshore Oil and Gas, 2016, 28(2): 10-12(in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-ZHSD201602002.htm
    [15]
    李平鲁, 梁慧娴. 珠江口盆地新生代岩浆活动与盆地演化、油气聚集的关系[J]. 广东地质, 1994, 9(2): 23-24.

    Li P L, Liang H X. Relationship between Cenozoic magmatic activity and basin evolution and hydrocarbon accumulation in the Pearl River Mouth Basin[J]. Guangdong Geology, 1994, 9(2): 23-24(in Chinese with English abstract).
    [16]
    倪金龙, 夏斌, 刘海龄. 南海及邻区前中生代构造演化与东特提斯构造域[J]. 海洋地质动态, 2005, 21(10): 11-16. https://www.cnki.com.cn/Article/CJFDTOTAL-HYDT200510002.htm

    Ni J L, Xia B, Liu H L. Pre-Mesozoic tectonic evolution of the South China Sea and the East Tethys tectonic domain[J]. Marine Geology Letters, 2005, 21(10): 11-16(in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-HYDT200510002.htm
    [17]
    张斌, 王璞珺, 张功成, 等. 珠-琼盆地新生界火山岩特征及其油气地质意义[J]. 石油勘探与开发, 2013, 40(6): 657-665. https://www.cnki.com.cn/Article/CJFDTOTAL-SKYK201306004.htm

    Zhang B, Wang P J, Zhang G C, et al. Cenozoic volcanic rocks in the Pearl River Mouth and Southeast Hainan Basins of South China Sea and their implications for petroleum geology[J]. Petroleum Exploration and Development, 2013, 40(6): 657-665(in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-SKYK201306004.htm
    [18]
    邵磊, 孟晓捷, 张功成, 等. 白云凹陷断裂特征对构造与沉积的控制作用[J]. 同济大学学报: 自然科学版, 2013, 41(9): 1435-1441. doi: 10.3969/j.issn.0253-374x.2013.09.025

    Shao L, Meng X J, Zhang G C, et al. Feature of faults system and its influence on tectonic and sedimentary history of Baiyun Sag[J]. Journal of Tongji University (Natural Science), 2013, 41(9): 1435-1441(in Chinese with English abstract). doi: 10.3969/j.issn.0253-374x.2013.09.025
    [19]
    Sun Q, Cartwright J, Wu S, et al. 3D seismic interpretation of dissolution pipes in the South China Sea: Genesis by subsurface, fluid induced collapse[J]. Marine Geology, 2013, 337(3): 171-181.
    [20]
    Lollar B S, O'Nions R K, Ballentine C J. Helium and neon isotope systematics in carbon dioxide-rich and hydrocarbon-rich gas reservoirs[J]. Geochimica et Cosmochimica Acta, 1994, 58(23): 5279-5290. doi: 10.1016/0016-7037(94)90311-5
    [21]
    Hulston J R, Hilton D R, Kaplan I R. Helium and carbon isotope systematics of natural gases from Taranaki Basin, New Zealand[J]. Applied Geochemistry, 2001, 16(4): 419-436. doi: 10.1016/S0883-2927(00)00045-7
    [22]
    Lupton J E. Terrestrial inert gases: Isotope tracer studies and clues to primordial components in the mantle[J]. Annual Review of Earth and Planetary Science Letters, 1983, 11(1): 371-414. doi: 10.1146/annurev.ea.11.050183.002103
    [23]
    Poreda R J, Jenden P D, Kaplan I R, et al. Mantle helium in Sacramento basin natural gas wells[J]. Geochimica et Cosmochimica Acta, 1986, 50(12): 2847-2853. doi: 10.1016/0016-7037(86)90231-0
    [24]
    Lollar B S, Ballentine C J, Onions R K. The fate of mantle-derived carbon in a continental sedimentary basin: Integration of C/He relationships and stable isotope signatures[J]. Geochimica et Cosmochimica Acta, 1997, 61(11): 2295-2307. doi: 10.1016/S0016-7037(97)00083-5
    [25]
    Huang B, Tian H, Huang H. Origin and accumulation of CO2 and its natural displacement of oils in the continental margin basins, northern South China Sea[J]. AAPG Bulletin, 2015, 99(7): 1349-1369. doi: 10.1306/02091514125
    [26]
    Li F, Li W. Petrological record of CO2 influx in the Dongying Sag, Bohai Bay Basin, NE China[J]. Applied Geochemistry. 2017, 84: 373-386. doi: 10.1016/j.apgeochem.2017.07.015
    [27]
    Zhao S, Liu L, Liu N. Petrographic and stable isotopic evidences of CO2-induced alterations in sandstones in the Lishui sag, East China Sea Basin, China[J]. Applied Geochemistry. 2018, 90: 115-128. doi: 10.1016/j.apgeochem.2018.01.004
    [28]
    徐思萌. 含有孔虫泥质粉砂岩内片钠铝石纵向分布特征与成因[D]. 长春: 吉林大学, 2017.

    Xu S M. The vertical distribution characteristics and genesis of dawsonite in pelitic siltstone with foraminifers: a case studying in LWX well of the eastern South China Sea[D]. Changchun: Jilin University, 2017(in Chinese with English abstract).
    [29]
    Hellevang H, Declercq J, Aagaard P. Why is Dawsonite Absent in CO2 Charged Reservoirs?[J]. Oil & Gas Science & Technology, 2011, 66(1): 119-135.
    [30]
    Stoessell R K. Regular Solution Site-Mixing Model for Chlorites[J]. Clays and Clay Minerals, 1984, 32(3): 205-212. doi: 10.1346/CCMN.1984.0320308
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article Views(398) PDF Downloads(575) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return