Citation: | Zeng Yujia, Ouyang Chuanxiang, Zeng Qingwei, Li Xinyu, Zhao Hongnan. Influence of ultra-low interfacial tension system on nonlinear seepage law of low permeability core[J]. Bulletin of Geological Science and Technology, 2021, 40(5): 307-315. doi: 10.19509/j.cnki.dzkq.2021.0027 |
[1] |
贾玉琴, 杨海恩, 陈威武. 五里湾一区长A油藏表面活性剂增油效果[J]. 大庆石油地质与开发, 2014, 33(2): 127-130. doi: 10.3969/J.ISSN.1000-3754.2014.02.026
Jia Y Q, Yang H W, Chen W W. Oil increasing effect of surfactant in Chang A reservoir of Wuliwan area 1[J]. Petroleum Geology and Development in Daqing, 2014, 33(2): 127-130(in Chinese with English abstract). doi: 10.3969/J.ISSN.1000-3754.2014.02.026
|
[2] |
李爱芬, 刘敏. 低渗透油藏油水两相启动压力梯度变化规律研究[J]. 西安石油大学学报: 自然科学版, 2010, 25(6): 47-53. doi: 10.3969/j.issn.1673-064X.2010.06.011
Li A F, Liu M. Study on the variation law of oil-water two-phase start-up pressure gradient in low permeability reservoir[J]. Journal of Xi'an Petroleum University: Natural Science Edition, 2010, 25(6): 47-53(in Chinese with English abstract). doi: 10.3969/j.issn.1673-064X.2010.06.011
|
[3] |
陈强, 孙雷, 潘毅. 页岩纳米孔内超临界CO2、CH4传输行为实验研究[J]. 西南石油大学学报: 自然科学版, 2018, 40(5): 154-162. https://www.cnki.com.cn/Article/CJFDTOTAL-XNSY201805016.htm
Chen Q, Sun L, Pan Y. Experimental study on the transmission behaviors of supercritical CO2 and CH4 in shale nanopores[J]. Journal of Southwest Petroleum University: Natural Science Edition, 2018, 40(5): 154-162. https://www.cnki.com.cn/Article/CJFDTOTAL-XNSY201805016.htm
|
[4] |
Wojnarowski P, Czarnota R. Novel liquid-gas corrected permeability correlation for dolomite formation[J]. Int. J. Rock. Mech. Min., 2018, 112: 11-15. doi: 10.1016/j.ijrmms.2018.10.004
|
[5] |
Tanikawa W, Shimamoto T. Comparison of Klinkenberg-corrected gas permeability and water permeability in sedimentary rocks[J]. Int. J. Rock. Mech. Min., 2009, 46: 229-238. doi: 10.1016/j.ijrmms.2008.03.004
|
[6] |
Song H Q, Cao Y, Yu M X, et al. Impact of permeability heterogeneity on production characteristics in water-bearing tight gas reservoirs with threshold pressure gradient[J]. J. Nat. Gas Sci. Eng., 2015, 22: 172-181 doi: 10.1016/j.jngse.2014.11.028
|
[7] |
Zeng J, Wang X Z, Guo J C, et al. Composite linear flow model for multi-fractured horizontal wells in tight sand reservoirs with the threshold pressure gradient[J]. J. Petrol. Sci. Eng., 2018, 165: 890-912. doi: 10.1016/j.petrol.2017.12.095
|
[8] |
Tian W B, Li A F, Ren X X, et al. The threshold pressure gradient effect in the tight sandstone gas reservoirs with high water saturation[J]. Fuel, 2018, 226: 221-229. doi: 10.1016/j.fuel.2018.03.192
|
[9] |
Ding J C, Yang S L, Nie X R, et al. Dynamic threshold pressure gradient in tight gas reservoir[J]. J. Nat. Gas Sci. Eng., 2014, 20: 155-160. doi: 10.1016/j.jngse.2014.06.019
|
[10] |
Bahrami P, Kazemi P, Mahdavi S. A novel approach for modeling and optimization of surfactant/polymer flooding based on genetic programming evolutionary algorithm[J]. Fuel, 2016, 179: 289-298. doi: 10.1016/j.fuel.2016.03.095
|
[11] |
Bhasin S, Kamalapurkar R, Johnson J, et al. A novel actor-critic-identifier architecture for approximate optimal control of uncertain nonlinear systems[J]. Automatica, 2013, 49(1): 82-92. doi: 10.1016/j.automatica.2012.09.019
|
[12] |
Ge Y L, Li S R, Chang P. An approximate dynamic programming method for the optimal control of alkali-surfactant-polymer flooding[J]. Journal of Process Control, 2018, 64: 15-26. doi: 10.1016/j.jprocont.2018.01.010
|
[13] |
张铜耀, 郝鹏. 渤中凹陷深层特低孔特低渗砂砾岩储层储集空间精细表征[J]. 地质科技通报, 2020, 39(4): 117-124. https://dzkjqb.cug.edu.cn/CN/abstract/abstract10007.shtml
Zhang T Y, Hao P. Fine characterization of the reservoir space in deep ultra-low porosity and ultra-low permeability glutenite in Bozhong Sag[J]. Bulletin of Geological Science and Technology, 2020, 39(4): 117-124(in Chinese with English abstract). https://dzkjqb.cug.edu.cn/CN/abstract/abstract10007.shtml
|
[14] |
赵春鹏, 岳湘安. 特低渗透油藏超前注水长岩心实验研究[J]. 西南石油大学学报: 自然科学版, 2011, 33(3): 105-108. doi: 10.3863/j.issn.1674-5086.2011.03.017
Zhao C P, Yue X A. Experimental study on long core of advanced water injection in ultra low permeability reservoir[J]. Journal of Southwest Petroleum University: Natural Science Edition, 2011, 33(3): 105-108(in Chinese with English abstract). doi: 10.3863/j.issn.1674-5086.2011.03.017
|
[15] |
周林, 刘皓天, 周坤, 等. 致密砂岩储层"甜点"识别及评价方法[J]. 地质科技通报, 2020, 39(4): 165-173. https://dzkjqb.cug.edu.cn/CN/abstract/abstract10012.shtml
Zhou L, Liu H T, Zhou K, et al. "Sweet spot" identification and evaluation of tight sandstone reservoir[J]. Bulletin of Geological Science and Technology, 2020, 39(4): 165-173(in Chinese with English abstract). https://dzkjqb.cug.edu.cn/CN/abstract/abstract10012.shtml
|
[16] |
赵方剑. 特高温低渗透油藏乳液表面活性剂驱现场试验[J]. 特种油气藏, 2017, 24(6): 125-130. doi: 10.3969/j.issn.1006-6535.2017.06.024
Zhao F J. Field test of emulsion surfactant flooding in ultra-high temperature and low permeability reservoirs[J]. Special Oil and Gas Reservoir, 2017, 24(6): 125-130(in Chinese with English abstract). doi: 10.3969/j.issn.1006-6535.2017.06.024
|
[17] |
熊健, 郭平, 汪周华. 超低渗油藏注气可行性实验研究[J]. 石油化工应用, 2011, 15(1): 20-21, 24. doi: 10.3969/j.issn.1673-5285.2011.01.007
Xiong J, Guo P, Wang Z H. Experimental study on feasibility of gas injection in ultra low permeability reservoir[J]. Petrochemical Application, 2011, 15(1): 20-21, 24(in Chinese with English abstract). doi: 10.3969/j.issn.1673-5285.2011.01.007
|
[18] |
史雪冬, 岳湘安, 张俊斌, 等. 聚驱后油藏井网调整与深部调剖三维物理模拟实验[J]. 断块油田, 2017, 24(3): 401-404. https://www.cnki.com.cn/Article/CJFDTOTAL-DKYT201703025.htm
Shi X D, Yue X A, Zhang J B, et al. 3-D physical simulation experiment of well pattern adjustment and deep profile control after polymer flooding[J]. Fault Block Oil and Gas Field, 2017, 24(3): 401-404(in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-DKYT201703025.htm
|
[19] |
安维青, 岳湘安, 李丹, 等. 致密储层超前注气压力传导与开采特征研究[J]. 特种油气藏, 2015, 22(6): 122-125. doi: 10.3969/j.issn.1006-6535.2015.06.028
An W Q, Yue X A, Li D. Study on pressure conduction and production characteristics of advanced gas injection in tight reservoir[J]. Special Reservoirs, 2015, 22(6): 122-125(in Chinese with English abstract). doi: 10.3969/j.issn.1006-6535.2015.06.028
|
[20] |
邱祥亮, 陈小东, 丁黎, 等. 姬塬地区长8_1油层组砂体结构特征及对油藏的控制作用[J]. 地质科技通报, 2020, 39(5): 87-96. https://dzkjqb.cug.edu.cn/CN/abstract/abstract10054.shtml
Qiu X L, Chen X D, Ding L, et al. Controlling effects of sand body structural characteristics on oil reservoirs of Chang 81 oil layer in Jiyuan area[J]. Bulletin of Geological Science and Technology, 2020, 39(5): 87-96(in Chinese with English abstract). https://dzkjqb.cug.edu.cn/CN/abstract/abstract10054.shtml
|
[21] |
Shchipanov A A, Surguchev L M, Jakobsen S R. Improved oil recovery by cyclic injection and production[J]. SPE, 2008, 116873: 1-11.
|
[22] |
Shi X D, Yue X A. Migration and plugging mechanisms of self-aggregated microspheres as a novel profile control[J]. Journal of Petroleum Science and Engineering, 2020, 184: 1062-1075. http://www.sciencedirect.com/science/article/pii/S0920410519308794
|
[23] |
Li S R, Ge Y L, Zang R L. A novel interacting multiple-model method and its application to moisture content prediction of ASP flooding[J]. CMES: Computer Modeling in Engineering & Sciences, 2018, 114(1): 95-116. http://www.ingentaconnect.com/content/tsp/cmes/2018/00000114/00000001/art00006
|
[24] |
Liu Q, Zhang P, Zhong S, et al. An improved actor-critic algorithm in continuous spaces with action weighting[J]. Chinese Journal of Computers, 2017, 40(6): 1252-1264. http://en.cnki.com.cn/Article_en/CJFDTotal-JSJX201706002.htm
|