Volume 40 Issue 5
Sep.  2021
Turn off MathJax
Article Contents
Zeng Yujia, Ouyang Chuanxiang, Zeng Qingwei, Li Xinyu, Zhao Hongnan. Influence of ultra-low interfacial tension system on nonlinear seepage law of low permeability core[J]. Bulletin of Geological Science and Technology, 2021, 40(5): 307-315. doi: 10.19509/j.cnki.dzkq.2021.0027
Citation: Zeng Yujia, Ouyang Chuanxiang, Zeng Qingwei, Li Xinyu, Zhao Hongnan. Influence of ultra-low interfacial tension system on nonlinear seepage law of low permeability core[J]. Bulletin of Geological Science and Technology, 2021, 40(5): 307-315. doi: 10.19509/j.cnki.dzkq.2021.0027

Influence of ultra-low interfacial tension system on nonlinear seepage law of low permeability core

doi: 10.19509/j.cnki.dzkq.2021.0027
  • Received Date: 29 Jan 2021
  • The starting pressure gradient in low permeability reservoir leads to the nonlinear characteristics of fluid flow, which makes the development mode of low permeability reservoir different from that of medium and high permeability reservoir.In order to study the nonlinear seepage phenomenon in the low permeability reservoir of Xinli Oilfield, taking the natural low permeability core of Xinli Oilfield as the research object, the influence of ultra-low interfacial tension system on the start-up pressure gradient of single-phase and two-phase fluid in Xinli low permeability cores was analyzed through the porous media seepage experiment of precision pressure tests.The results show that for any fluid, the low permeability core of Xinli Oilfield shows nonlinear seepage characteristics, and there is a certain threshold pressure gradient.The value of pseudo starting pressure gradient of low permeability cores is higher than that of starting pressure gradient, and both of them decrease with the increase of permeability, and the relationship between them is power.The ultra-low interfacial tension system can obviously reduce the minimum starting pressure gradient and quasi starting pressure gradient of low permeability cores.For cores with different permeability, the relationship between the two-phase critical starting pressure gradient and water saturation shows a similar change law, that is, the two-phase critical starting pressure gradient firstly increases and then decreases with the increase of average water saturation.Under different permeability, the highest critical pressure gradient of water flooding and ultra-low interfacial tension system flooding is compared.The highest point of critical pressure gradient in ultra-low interfacial tension system is obviously smaller than that in water flooding.This shows that the decrease of interfacial tension can significantly reduce the two-phase critical pressure gradient during oil displacement, and the ultra-low interfacial tension system improves the injectivity of the reservoir.This study provides a reference for the selection of development mode after water flooding in Xinli low permeability reservoir.

     

  • loading
  • [1]
    贾玉琴, 杨海恩, 陈威武. 五里湾一区长A油藏表面活性剂增油效果[J]. 大庆石油地质与开发, 2014, 33(2): 127-130. doi: 10.3969/J.ISSN.1000-3754.2014.02.026

    Jia Y Q, Yang H W, Chen W W. Oil increasing effect of surfactant in Chang A reservoir of Wuliwan area 1[J]. Petroleum Geology and Development in Daqing, 2014, 33(2): 127-130(in Chinese with English abstract). doi: 10.3969/J.ISSN.1000-3754.2014.02.026
    [2]
    李爱芬, 刘敏. 低渗透油藏油水两相启动压力梯度变化规律研究[J]. 西安石油大学学报: 自然科学版, 2010, 25(6): 47-53. doi: 10.3969/j.issn.1673-064X.2010.06.011

    Li A F, Liu M. Study on the variation law of oil-water two-phase start-up pressure gradient in low permeability reservoir[J]. Journal of Xi'an Petroleum University: Natural Science Edition, 2010, 25(6): 47-53(in Chinese with English abstract). doi: 10.3969/j.issn.1673-064X.2010.06.011
    [3]
    陈强, 孙雷, 潘毅. 页岩纳米孔内超临界CO2、CH4传输行为实验研究[J]. 西南石油大学学报: 自然科学版, 2018, 40(5): 154-162. https://www.cnki.com.cn/Article/CJFDTOTAL-XNSY201805016.htm

    Chen Q, Sun L, Pan Y. Experimental study on the transmission behaviors of supercritical CO2 and CH4 in shale nanopores[J]. Journal of Southwest Petroleum University: Natural Science Edition, 2018, 40(5): 154-162. https://www.cnki.com.cn/Article/CJFDTOTAL-XNSY201805016.htm
    [4]
    Wojnarowski P, Czarnota R. Novel liquid-gas corrected permeability correlation for dolomite formation[J]. Int. J. Rock. Mech. Min., 2018, 112: 11-15. doi: 10.1016/j.ijrmms.2018.10.004
    [5]
    Tanikawa W, Shimamoto T. Comparison of Klinkenberg-corrected gas permeability and water permeability in sedimentary rocks[J]. Int. J. Rock. Mech. Min., 2009, 46: 229-238. doi: 10.1016/j.ijrmms.2008.03.004
    [6]
    Song H Q, Cao Y, Yu M X, et al. Impact of permeability heterogeneity on production characteristics in water-bearing tight gas reservoirs with threshold pressure gradient[J]. J. Nat. Gas Sci. Eng., 2015, 22: 172-181 doi: 10.1016/j.jngse.2014.11.028
    [7]
    Zeng J, Wang X Z, Guo J C, et al. Composite linear flow model for multi-fractured horizontal wells in tight sand reservoirs with the threshold pressure gradient[J]. J. Petrol. Sci. Eng., 2018, 165: 890-912. doi: 10.1016/j.petrol.2017.12.095
    [8]
    Tian W B, Li A F, Ren X X, et al. The threshold pressure gradient effect in the tight sandstone gas reservoirs with high water saturation[J]. Fuel, 2018, 226: 221-229. doi: 10.1016/j.fuel.2018.03.192
    [9]
    Ding J C, Yang S L, Nie X R, et al. Dynamic threshold pressure gradient in tight gas reservoir[J]. J. Nat. Gas Sci. Eng., 2014, 20: 155-160. doi: 10.1016/j.jngse.2014.06.019
    [10]
    Bahrami P, Kazemi P, Mahdavi S. A novel approach for modeling and optimization of surfactant/polymer flooding based on genetic programming evolutionary algorithm[J]. Fuel, 2016, 179: 289-298. doi: 10.1016/j.fuel.2016.03.095
    [11]
    Bhasin S, Kamalapurkar R, Johnson J, et al. A novel actor-critic-identifier architecture for approximate optimal control of uncertain nonlinear systems[J]. Automatica, 2013, 49(1): 82-92. doi: 10.1016/j.automatica.2012.09.019
    [12]
    Ge Y L, Li S R, Chang P. An approximate dynamic programming method for the optimal control of alkali-surfactant-polymer flooding[J]. Journal of Process Control, 2018, 64: 15-26. doi: 10.1016/j.jprocont.2018.01.010
    [13]
    张铜耀, 郝鹏. 渤中凹陷深层特低孔特低渗砂砾岩储层储集空间精细表征[J]. 地质科技通报, 2020, 39(4): 117-124. https://dzkjqb.cug.edu.cn/CN/abstract/abstract10007.shtml

    Zhang T Y, Hao P. Fine characterization of the reservoir space in deep ultra-low porosity and ultra-low permeability glutenite in Bozhong Sag[J]. Bulletin of Geological Science and Technology, 2020, 39(4): 117-124(in Chinese with English abstract). https://dzkjqb.cug.edu.cn/CN/abstract/abstract10007.shtml
    [14]
    赵春鹏, 岳湘安. 特低渗透油藏超前注水长岩心实验研究[J]. 西南石油大学学报: 自然科学版, 2011, 33(3): 105-108. doi: 10.3863/j.issn.1674-5086.2011.03.017

    Zhao C P, Yue X A. Experimental study on long core of advanced water injection in ultra low permeability reservoir[J]. Journal of Southwest Petroleum University: Natural Science Edition, 2011, 33(3): 105-108(in Chinese with English abstract). doi: 10.3863/j.issn.1674-5086.2011.03.017
    [15]
    周林, 刘皓天, 周坤, 等. 致密砂岩储层"甜点"识别及评价方法[J]. 地质科技通报, 2020, 39(4): 165-173. https://dzkjqb.cug.edu.cn/CN/abstract/abstract10012.shtml

    Zhou L, Liu H T, Zhou K, et al. "Sweet spot" identification and evaluation of tight sandstone reservoir[J]. Bulletin of Geological Science and Technology, 2020, 39(4): 165-173(in Chinese with English abstract). https://dzkjqb.cug.edu.cn/CN/abstract/abstract10012.shtml
    [16]
    赵方剑. 特高温低渗透油藏乳液表面活性剂驱现场试验[J]. 特种油气藏, 2017, 24(6): 125-130. doi: 10.3969/j.issn.1006-6535.2017.06.024

    Zhao F J. Field test of emulsion surfactant flooding in ultra-high temperature and low permeability reservoirs[J]. Special Oil and Gas Reservoir, 2017, 24(6): 125-130(in Chinese with English abstract). doi: 10.3969/j.issn.1006-6535.2017.06.024
    [17]
    熊健, 郭平, 汪周华. 超低渗油藏注气可行性实验研究[J]. 石油化工应用, 2011, 15(1): 20-21, 24. doi: 10.3969/j.issn.1673-5285.2011.01.007

    Xiong J, Guo P, Wang Z H. Experimental study on feasibility of gas injection in ultra low permeability reservoir[J]. Petrochemical Application, 2011, 15(1): 20-21, 24(in Chinese with English abstract). doi: 10.3969/j.issn.1673-5285.2011.01.007
    [18]
    史雪冬, 岳湘安, 张俊斌, 等. 聚驱后油藏井网调整与深部调剖三维物理模拟实验[J]. 断块油田, 2017, 24(3): 401-404. https://www.cnki.com.cn/Article/CJFDTOTAL-DKYT201703025.htm

    Shi X D, Yue X A, Zhang J B, et al. 3-D physical simulation experiment of well pattern adjustment and deep profile control after polymer flooding[J]. Fault Block Oil and Gas Field, 2017, 24(3): 401-404(in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-DKYT201703025.htm
    [19]
    安维青, 岳湘安, 李丹, 等. 致密储层超前注气压力传导与开采特征研究[J]. 特种油气藏, 2015, 22(6): 122-125. doi: 10.3969/j.issn.1006-6535.2015.06.028

    An W Q, Yue X A, Li D. Study on pressure conduction and production characteristics of advanced gas injection in tight reservoir[J]. Special Reservoirs, 2015, 22(6): 122-125(in Chinese with English abstract). doi: 10.3969/j.issn.1006-6535.2015.06.028
    [20]
    邱祥亮, 陈小东, 丁黎, 等. 姬塬地区长8_1油层组砂体结构特征及对油藏的控制作用[J]. 地质科技通报, 2020, 39(5): 87-96. https://dzkjqb.cug.edu.cn/CN/abstract/abstract10054.shtml

    Qiu X L, Chen X D, Ding L, et al. Controlling effects of sand body structural characteristics on oil reservoirs of Chang 81 oil layer in Jiyuan area[J]. Bulletin of Geological Science and Technology, 2020, 39(5): 87-96(in Chinese with English abstract). https://dzkjqb.cug.edu.cn/CN/abstract/abstract10054.shtml
    [21]
    Shchipanov A A, Surguchev L M, Jakobsen S R. Improved oil recovery by cyclic injection and production[J]. SPE, 2008, 116873: 1-11.
    [22]
    Shi X D, Yue X A. Migration and plugging mechanisms of self-aggregated microspheres as a novel profile control[J]. Journal of Petroleum Science and Engineering, 2020, 184: 1062-1075. http://www.sciencedirect.com/science/article/pii/S0920410519308794
    [23]
    Li S R, Ge Y L, Zang R L. A novel interacting multiple-model method and its application to moisture content prediction of ASP flooding[J]. CMES: Computer Modeling in Engineering & Sciences, 2018, 114(1): 95-116. http://www.ingentaconnect.com/content/tsp/cmes/2018/00000114/00000001/art00006
    [24]
    Liu Q, Zhang P, Zhong S, et al. An improved actor-critic algorithm in continuous spaces with action weighting[J]. Chinese Journal of Computers, 2017, 40(6): 1252-1264. http://en.cnki.com.cn/Article_en/CJFDTotal-JSJX201706002.htm
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article Views(184) PDF Downloads(271) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return