Volume 40 Issue 5
Sep.  2021
Turn off MathJax
Article Contents
Jiang Ye, Liu Qiong, Zhang Yingde. Structural characteristics of Jan Mayen microcontinent and tectonic evolution model of volcanic passive margin in distal domain[J]. Bulletin of Geological Science and Technology, 2021, 40(5): 112-122. doi: 10.19509/j.cnki.dzkq.2021.0031
Citation: Jiang Ye, Liu Qiong, Zhang Yingde. Structural characteristics of Jan Mayen microcontinent and tectonic evolution model of volcanic passive margin in distal domain[J]. Bulletin of Geological Science and Technology, 2021, 40(5): 112-122. doi: 10.19509/j.cnki.dzkq.2021.0031

Structural characteristics of Jan Mayen microcontinent and tectonic evolution model of volcanic passive margin in distal domain

doi: 10.19509/j.cnki.dzkq.2021.0031
  • Received Date: 04 Jan 2021
  • With the deepening of global oil and gas exploration research, the North Atlantic polar region has gradually become the frontier of oil and gas exploration, but the exploration degree of Jan Mayan micro-continent is very low.The study on stratigraphy, structures and tectonic evolution modelling of the Jan Mayan microcontinent (JMMC)is presented in the paper based on seismic, gravity and magnetic data newly acquired by CNOOC in its contract area and other new published papers which show the most update progress of the JMMC. Located in the central part of the Norwegian-Greenland Sea of the North Atlantic, the JMMC is conjugate with the Jameson Land Basin on the Greenland continent margin and the Vøring Basin on the Norwegian shelf margin of the Beltic Continent in accordance with similar Paleozoic-Mesozoic stratigraphy. The JMMC extends southwards from the Jan Mayan fracture zone towards northern Iceland and its architecture shows the characteristics of detachment faults which is similar to the Mesozoic fault system of the Vøring Basin. The distribution of SDR, volcanic intrusion and explosion can be interpreted on the seismic data which indicates the JMMC is the distal domain of the volcanic passive margin in the North Atlantic mostly during the Cenozoic age. The tectonic evolution model is setup by analogic basin analysis and is supposed to start from the Paleozoic-Mesozoic orogeny to rifting, and then be influenced by the twice seafloor spreading of the age 55 Ma and 25 Ma. The first seafloor spreading of 55 Ma age caused the continental crust break-up and formed the volcanic passive margin between the Greenland and Beltic, especially the JMMC's separating from the conjugate Norwegian shelf margin. The second seafloor spreading of 25 Ma age caused the oceanic ridge jump due to the Iceland mantle plume drifting off the Greenland and also caused the JMMC's separation from the Greenland Continent as an 'abandoned orphan' floating on the oceanic crust. The meaning of this study is to discuss kinematic evolution of residual continental crust detached from the distal domain of the plate and to indicate lithospheric extension and break while the embryonic oceanic crust generating through the detachment movements and mantle upwelling.

     

  • loading
  • [1]
    Gernigon L, Olesen O, Ebbing J, et al. Geophysical insights and early spreading history in the vicinity of the Jan Manyen Fracture Zone, Norwegian-Greenland Sea[J]. Tectonophysics, 2009, 268: 185-205. http://www.researchgate.net/profile/Carmen_Gaina/publication/222536885_Geophysical_insights_and_early_spreading_history_in_the_vicinity_of_the_Jan_Mayen_Fracture_Zone_NorwegianGreenland_Sea/links/0912f50b7bcda49b95000000.pdf
    [2]
    Barton C, Moos D, Blangy J P. Analysis of full waveform acoustic logging data at ODP Site 642: Outer Voring Plateau, Sites 642-644, 19 June 1985-23 August 1985[C]//Anon. Proceedings Ocean Drilling Program: Scientific Results, 1989, 104: 953-964.
    [3]
    Eldholm O, Thiede J, Taylor E. The Norwegian continental margin; tectonic, volcanic, and paleoenvironmental framework, Sites 642-644, 19 June 1985-23 August 1985[C]//Anon. Proceedings Ocean Drilling Program, Scientific Results, 1989, 104: 5-26.
    [4]
    Larsen H C. Geological perspectives of the east Greenland continental margin[J]. Bulletin of Geological Society of Denmark, 1980, 29(1): 77-101.
    [5]
    Mosar J, Eide E A, Osmundsen P T, et al. Greenland-Norway separation: A geodynamic model for the North Atlantic[J]. Norwegian Journal of Geology, 2002, 82: 282-299. http://www.researchgate.net/profile/Jon_Mosar/publication/33681834_Greenland_-_Norway_separation_A_geodynamic_model_for_the_North_Atlantic/links/55d493a008ae1e6516636903
    [6]
    Bird R T, Naar D F. Intrafransform origins of mid-ocean ridge microplates[J]. Geology, 1994, 22: 987-990. doi: 10.1130/0091-7613(1994)022<0987:IOOMOR>2.3.CO;2
    [7]
    张军东, 成林. 北大西洋扬马延海脊重力场特征研究[J]. 石化技术, 2017(2): 149-150. doi: 10.3969/j.issn.1006-0235.2017.02.115

    Zhang D J, Cheng L. Research on gravity anomaly characteristics of Yangmayan ridge gravity field of Northern Atlantic[J]. Petrochemical Industry Technology, 2017(2): 149-150(in Chinese with English abstract). doi: 10.3969/j.issn.1006-0235.2017.02.115
    [8]
    李进波, 张文, 赵亮, 等. 扬马延微陆块中部重力场及构造特征[J]. 地球物理学进展, 2018, 33(2): 467-472. https://www.cnki.com.cn/Article/CJFDTOTAL-DQWJ201802003.htm

    Li J B, Zhang W, Zhao L, et al. Gravity field and tectonic features in the middle area of the Jan Mayen microcontinent[J]. Progress in Geophysics, 2018, 33(2): 467-472(in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-DQWJ201802003.htm
    [9]
    Carmen G, Laurent G, Philip B. Palaeocene-recent plate boundaries in the NE Atlantic and the formation of the Jan Mayan microcontinent[J]. Journal of the Geological Society, 2009, 166: 601-616. doi: 10.1144/0016-76492008-112
    [10]
    Kuvaas B, Kodaira S. The formation of the Jan Mayen microcontinent: The missing piece in the continental puzzle between the More-Voring Basins and East Greenland[J]. First Break, 1997, 15(7): 239-247. http://www.researchgate.net/publication/275941736_The_formation_of_the_Jan_Mayen_microcontinent_The_missing_piece_in_the_continental_puzzle_between_the_More-Voring_Basins_and_East_Greenland
    [11]
    Kodaira S, Mjelde R, Gunnarsson K, et al. Structure of the Jan Mayen microcontinent and implications for its evolution[J]. Geophys Journal International, 1998, 132: 383-400. doi: 10.1046/j.1365-246x.1998.00444.x
    [12]
    Peron-Pinvidic G, Gernigon L, Gaina C, et al. Insights from the Jan Mayan system in the Norwegian-Greenland sea: I. Mapping of a microcontinent[J]. Geophysical Journal International, 2012, 191(2): 385-412. doi: 10.1111/j.1365-246X.2012.05639.x
    [13]
    Kandilarov A, Mjelde R, Pedersen R B, et al. The northern boundary of the Jan Mayen microcontinent, North Atlantic determined from ocean bottom seismic, multichannel seismic, and gravity data[J]. Marine Geophysical Research, 2012, 33: 55-76. doi: 10.1007/s11001-012-9146-4
    [14]
    IHS. Jan Mayan Ridge Basin summary report[R]. (2020-12-01)[2021-01-04]. https://my.ihs.com/Energy/Products.
    [15]
    IHS. Voring Basin summary report[R]. 2020 December 1. https://my.ihs.com/Energy/Products.
    [16]
    IHS. Jameson Land Basin summary report[R]. (2020-12-01)[2021-01-04]. https://my.ihs.com/Energy/Products.
    [17]
    Blischke A, Stroker M S, Brandsdottir B, et al. The Jan Mayan microcontinent's Cenozoic stratigraphic succession and structural evoluation within the NE-Atlantic[J]. Marine and Petroleum Geology, 2019, 103: 702-737. doi: 10.1016/j.marpetgeo.2019.02.008
    [18]
    Lundin E, Dore A G. Mid-Cenozoic post-breakup deformation in the 'passive' margins bordering the Norwegian-Greenland Sea[J]. Marine and Petroleum Geology, 2002, 19: 79-93. doi: 10.1016/S0264-8172(01)00046-0
    [19]
    Peron-Pinvidic G, Gernigon L, Gaina C, et al. Insights from the Jan Mayen system in the Norwegian-Greenland Sea: II. Architecture of a microcontinent[J]. Geophysical Journal International, 2012, 191(2): 413-435. doi: 10.1111/j.1365-246X.2012.05623.x
    [20]
    Wernicke B. Uniform-sense normal simple shear of the continental lithosphere[J]. Canadian Journal of Earth Sciences, 1985, 22: 108-125. doi: 10.1139/e85-009
    [21]
    Whitney D L, Teyssier C, Rey P, et al. Continental and oceanic core complexes[J]. Geological Society of American Bulletin, 2013, 125(3/4): 273-298. http://pubs.geoscienceworld.org/gsabulletin/article-pdf/125/3-4/273/418463/273.pdf
    [22]
    Foulger G R, Dore T, Emeleus H, et al. The Iceland microcontinent and a continental Greenland-Iceland-Faroe Ridge[J]. Earth-Science Reviews, 2020, 206: 102926. doi: 10.1016/j.earscirev.2019.102926
    [23]
    汪小妹, 曾志刚, 欧阳荷根, 等. 大洋橄榄岩的蛇纹岩化研究进展评述[J]. 地球科学进展, 2010, 25(6): 605-616.

    Wang X M, Zeng Z G, Ouyang H G, et al. Review of progress in serpentinization research of oceanic peridotites[J]. Advances in Earth Science, 2010, 26(6): 605-616(in Chinese with English abstract).
    [24]
    Henriksen N. Geological history of Greenland: Four billion years of earth evolution[R]. [S. l. ]: Geological Survey of Denmark and Greenland (GEUS), 2008: 1-272.
    [25]
    Saunders A D, Fitton J G, Kerr A C, et al. The North Atlantic Igneous Province[C]//Mahoney J J, Coffin M F. Large igneous provinces: Continental, oceanic and planetary flood volcanism. [S. l. ]: American Geophysical Union Monograph, 1997: 45-93.
    [26]
    Geoffroy L. Volcanic passive margins[J]. Comptes Rendus Geosciences, 2005, 337(16): 1395-1408. doi: 10.1016/j.crte.2005.10.006
    [27]
    Ferrand T P. Transition from amagmatic to volcanic margin: Mantle exhumation in the Vøring Basin before the Icelandic plume influence[J]. Tectonophysics, 2020, 776: 228319. doi: 10.1016/j.tecto.2020.228319
    [28]
    Mosar J. Scandinavia's North Atlantic passive margin[J]. Journal of Geophysical Research, 2003, 108(B8): 2360. doi: 10.1029/2002JB002134
    [29]
    Muñoz-Barrera J M, Rotevatn A, Gawthorpe R L, et al. The role of structural inheritance in the development of high-displacement crustal faults in the necking domain of rifted margins: The Klakk fault complex, Frøya High, offshore mid-Norway[J]. Journal of Structureal Geology, 2020, 140: 104163. doi: 10.1016/j.jsg.2020.104163
    [30]
    Saunders A D, Larsen H C, Fitton J G. Magmatic development of the southeast Greenland and margin and evolution of the Iceland plum: Geochemical constraints from LEG 152[C]//Saunders A D, Larsen H C, Wise S W Jr. Proceedings of the Ocean Drilling Program, Scientific Results. 1998, 152: 40.
    [31]
    Franke D, Klitzke P, Barckhausen U, et al. Polyphase magmatism during the formation of the Northern East Greenland continental margin[J]. Tectonics, 2019, 38(4): 2961-2982. doi: 10.1029/2019TC005552
    [32]
    Geissler W H, Gaina C, Hopper J R, et al. Seismic volcanostratigraphy of the NE Greenland continental margin[C]//Pe'ron-Pinvidic G, Hopper J R, Stoker M S, et al. The NE Atlantic region: A reappraisal of crustal structure, tectonostratigraphy and magmatic evolution. London: Geological Society, 2016: 447.
    [33]
    Peron-Pinvidic G, Osmundsen P T. From orogeny to rifting: Insights from the Norwegian 'reactivation phase'[J]. Scientific Reports, 2020, 10: 14860. doi: 10.1038/s41598-020-71893-z
    [34]
    Gernigon L, Blischke A, Nasuti A, et al. Conjugate volcanic rifted margins, seafloor spreading, and microcontinent: Insights from new high-resolution aeromagnetic surveys in the Norway Basin[J]. Tectonics, 2015, 34(5): 907-933. doi: 10.1002/2014TC003717
    [35]
    Zastrozhnov D, Gernigon L, Gogin I, et al. Regional structure and polyphased Cretaceous-Paleocene rift and basin development of the mid-Norwegian volcanic passive margin[J]. Marine and Petroleum Geology, 2020, 115: 104269. doi: 10.1016/j.marpetgeo.2020.104269
    [36]
    任建业, 庞雄, 雷超, 等. 被动陆缘洋陆转换带和演示圈伸展破裂过程分析及其对南海陆缘深水盆地研究的启示[J]. 地学前缘, 2015, 22(1): 102-114. https://www.cnki.com.cn/Article/CJFDTOTAL-DXQY201501011.htm

    Ren J Y, Pang X, Lei C, et al. Ocean and continent transition in passive continental margins and analysis of lithospheric extention and breakup process: Implication for research of the deepwater basins in the continental margins of South China Sea[J]. Earth Science Frontiers, 2015, 22(1): 102-114(in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-DXQY201501011.htm
    [37]
    Torske T, Prestvik T. Mesozoic detachment faulting between Greenland and Norway: Inferences from Jan Mayen fracture zone system and associated alkalic volcanic rocks[J]. Geology (Boulder), 1991, 19(5): 481-484. doi: 10.1130/0091-7613(1991)019<0481:MDFBGA>2.3.CO;2
    [38]
    Mosar J, Torsvik T H. Opening the Norwegian and Greenland Seas: Plate tectonics in Mid: Norway since Late Permian[C]//BATLAS: Mid Norway plate reconstruction atlas with global and North Atlantic perspectives. [S. l. ]: Geological Survey of Norway, 2002: 48-59.
    [39]
    Gaina C, Nasuti A, Kimbell G S, et al. Break-up and seafloor spreading domains in the NE Atlantic[C]//Pe'ron-Pinvidic G, Hopper J R, Stoker M S, et al. The NE Atlantic Region: A reappraisal of crustal structure, tectonostratigraphy and magmatic evolution. London: Geological of Society, 2017: 447.
    [40]
    Hamann N E, Whittaker R C, Stemmerik L. Geological development of the Northeast Greenland Shelf[C]//Petroleum Geology Conference Series 6. London: Geological Society, 2005: 887-902.
    [41]
    Banks G, Bernstein S, Salehi S, et al. Liverpool land basement high, Greenland: Visualizing inputs for fractured crystalline basement reservoir models[J]. GEU Bulletin, 2019, 43: e2019430204. http://www.researchgate.net/publication/334612123_Banks_et_al_2019_Liverpool_Land_Basement_High_Greenland_visualising_inputs_for_fractured_crystalline_basement_reservoir_models
    [42]
    Brekke H. The tectonic evolution of the Norwegian sea continental margin with emphasis on the Vøring and More Basins[J]. Geological Society of London, Special Publications, 2000, 167(1): 327-378. doi: 10.1144/GSL.SP.2000.167.01.13
    [43]
    陈亮, 赵红岩, 韩文明, 等. 毛塞几比盆地外陆架-陆坡区阿尔比阶-土伦阶沉积特征及成藏体系[J]. 地质科技通报, 2020, 39(4): 132-140. https://dzkjqb.cug.edu.cn/CN/abstract/abstract10009.shtml

    Chen L, Zhao H Y, Han W M, et al. Sedimentary facies characteristics and accumulation systems of Albian-Turonian at the outer shelf-slope area of MSGB Basin[J]. Bulletin of Geological Science and Technology, 2020, 39(4): 132-140(in Chinese with English abstract). https://dzkjqb.cug.edu.cn/CN/abstract/abstract10009.shtml
    [44]
    康洪全, 贾怀存, 程涛, 等. 南大西洋两岸含盐盆地裂谷层序油气地质特征与油气分布特征对比[J]. 地质科技情报, 2018, 37(4): 113-119. https://www.cnki.com.cn/Article/CJFDTOTAL-DZKQ201804015.htm

    Kang H Q, Jia H C, Cheng T, et al. Comparison of petroleum geology and hydrocarbon accumulation of rift sequence in the salt basins on both sides of South Atlantic Ocean[J]. Geological Scinece and Technolody Information, 2018, 37(4): 113-119(in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-DZKQ201804015.htm
    [45]
    赵宏超, 朱筱敏, 葛家旺, 等. 洋陆转换带类型特征和形成机理及其在南海北部的表现特征[J]. 地质科技情报, 2018, 37(4): 51-60. https://www.cnki.com.cn/Article/CJFDTOTAL-DZKQ201804007.htm

    Zhao H C, Zhu X M, Ge J W, et al. Forming mechanism and types characteristics of ocean-continent transition and its performance in North South China Sea[J]. Geological Science and Technology Information, 2018, 37(4): 51-60(in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-DZKQ201804007.htm
    [46]
    郭玲莉, 李三忠, 赵淑娟, 等. 洋-陆转换带类型与成因机制[J]. 地学前缘, 2017, 24(4): 320-328. https://www.cnki.com.cn/Article/CJFDTOTAL-DXQY201704035.htm

    Guo L L, Li S Z, Zhao S J, et al. Formation mechanism and types of ocean-continent transition zone[J]. Earth Science Frontiers, 2017, 24(4): 320-328(in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-DXQY201704035.htm
    [47]
    Mosar J, Eide E A, Osmundsen P T, et al. Greenland-Norway separation: A geodynamic model for the North Atlantic[J]. Norwegian Journal of Geology, 2002, 82: 282-299. http://www.researchgate.net/profile/Jon_Mosar/publication/33681834_Greenland_-_Norway_separation_A_geodynamic_model_for_the_North_Atlantic/links/55d493a008ae1e6516636903
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article Views(730) PDF Downloads(293) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return