Volume 40 Issue 5
Sep.  2021
Turn off MathJax
Article Contents
Xu Han, Yao Kongxuan, Cheng Danyi, Song Qiangyin, Ma Zhiming, Zhu Xuming, Wu Xiaoming, Zhao Guanhui, Cai Xiaochun. Stratigraphic lithology identification based on no-dig Logging While Drilling system and random forest[J]. Bulletin of Geological Science and Technology, 2021, 40(5): 272-280. doi: 10.19509/j.cnki.dzkq.2021.0039
Citation: Xu Han, Yao Kongxuan, Cheng Danyi, Song Qiangyin, Ma Zhiming, Zhu Xuming, Wu Xiaoming, Zhao Guanhui, Cai Xiaochun. Stratigraphic lithology identification based on no-dig Logging While Drilling system and random forest[J]. Bulletin of Geological Science and Technology, 2021, 40(5): 272-280. doi: 10.19509/j.cnki.dzkq.2021.0039

Stratigraphic lithology identification based on no-dig Logging While Drilling system and random forest

doi: 10.19509/j.cnki.dzkq.2021.0039
  • Received Date: 30 Jan 2021
  • Through the self-developed and designed no-dig Logging While Drilling(LWD) system, it can collect the parameters of no-dig drilling, identify the real-time formation lithology of no-dig drilling, and provide safety information guarantee for no-dig construction.In view of the lack of prospecting data in no-dig engineering, it is difficult to determine the lithology of the excavation stratum.A real-time data acquisition system based on the no-dig LWD system is proposed.The random forest algorithm is used to establish the stratum identification model, and identify the unknown strata.The identification results are displayed visually.Through the practical application of the detection while drilling system in the engineering field, the drilling sensitive parameters including Rate of Penetration(ROP), torque, rotation speed, pulling force, pump pressure and pump volume are obtained as training samples.The random forest algorithm is used to train the collected drilling parameters, and the decision tree and random forest are constructed to classify the drilling parameters.A classification model aiming at the classification of typical no-dig strata is established, and the classification labels of miscellaneous fill, clay, silty fine sand, gravel and silt are determined respectively.Furthermore, based on the classification results of machine learning, PCA principal component analysis is used to reduce the dimension of strata recognition features to three-dimensional, and realize the three-dimensional display of formation lithology identification results.The prediction model is applied to practical engineering to verify its effectiveness.The results show that the method can quickly identify the drilling formation under the condition of no-dig real-time drilling, and the recognition accuracy is as high as 92%.The research results provide important information for the selection of no-dig mud and no-dig reaming stage.

     

  • loading
  • [1]
    颜纯文. 我国非开挖行业现状与展望[J]. 探矿工程: 岩土钻掘工程, 2010(10): 56-60. doi: 10.3969/j.issn.1672-7428.2010.10.013

    Yan C W. Currentstatus of trenchless industry in China and the prospect[J]. Exploration Engineering: Rock & Soil Drilling and Tunneling, 2010(10): 56-60(in Chinese with English abstract). doi: 10.3969/j.issn.1672-7428.2010.10.013
    [2]
    刘军. 非开挖水平定向钻进铺管施工技术及工程应用研究[D]. 西安: 西安建筑科技大学, 2004.

    Liu J. Construction technology and project application study of no-dig horizontal directional drilling dipe paving[D]. Xi'an: Xi'an University of Architecture and Technology, 2004(in Chinese with English abstract).
    [3]
    冯锐, 张鹏, 苏树尧, 等. 大口径长距离钢顶管注浆减阻技术: 以黄浦江上游水源地连通管工程为例[J]. 地质科技通报, 2020, 39(4): 174-180. https://dzkjqb.cug.edu.cn/CN/abstract/abstract10013.shtml

    Feng R, Zhang P, Su S Y, et al. Resistance reduction by grouting to large diameter and long distance steel pipe jacking: A case study of pipe jacking project in the upstreem water source area of Huangpu River[J]. Bulletin of Geological Science and Technology, 2020, 39(4): 174-180(in Chinese with English abstract). https://dzkjqb.cug.edu.cn/CN/abstract/abstract10013.shtml
    [4]
    谭卓英, 李文, 岳鹏君, 等. 基于钻进参数的岩土地层结构识别技术与方法[J]. 岩土工程学报, 2015, 37(7): 1328-1333. https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC201507023.htm

    Tan Z Y, Li W, Yue P J, et al. Techniques and approaches for identification of geoformation structure based on diamond drilling parameters[J]. Journal of Geotechnical Engineering, 2015, 37(7): 1328-1333(in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC201507023.htm
    [5]
    李章林, 吴冲龙, 张夏林, 等. 地质科学大数据背景下的矿体动态建模方法探讨[J]. 地质科技通报, 2020, 39(4): 59-68. https://dzkjqb.cug.edu.cn/CN/abstract/abstract10000.shtml

    Li Z L, Wu L C, Zhang X L, et al. Discussion on dynamic orebody modeling method with geological science big data[J]. Bulletin of Geological Science and Technology, 2020, 39(4): 59-68(in Chinese with English abstract). https://dzkjqb.cug.edu.cn/CN/abstract/abstract10000.shtml
    [6]
    佟晶, 张婉, 张玄杰, 等. 基于航空重、磁数据的南黄海海相地层分布特征识别[J]. 中国地质调查, 2020, 7(5): 95-106. https://www.cnki.com.cn/Article/CJFDTOTAL-DZDC202005011.htm

    Tong J, Zhang W, Zhang X J, et al. Characteristics of marine strata distribution in South Yellow Sea based on airborne gravity and magnetic data[J]. Geological Survey of China, 2020, 7(5): 95-106(in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-DZDC202005011.htm
    [7]
    宋康明, 姜阳厚, 谭志祥, 等. 基于随机森林方法的岩石节理粗糙度系数研究[J]. 地质科技情报, 2018, 37(3): 263-267. https://www.cnki.com.cn/Article/CJFDTOTAL-DZKQ201803035.htm

    Song K M, Jiang Y H, Tan Z X, et al. Method to calculate the joint roughness coefficient based on random forest[J]. Geological Science and Technology Information, 2018, 37(3): 263-267(in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-DZKQ201803035.htm
    [8]
    张幼振, 张宁, 邵俊杰, 等. 基于钻进参数聚类的含煤地层岩性模糊识别[J]. 煤炭学报, 2019, 44(8): 2328-2335. https://www.cnki.com.cn/Article/CJFDTOTAL-MTXB201908007.htm

    Zhang Y B, Zhang N, Shao J J, et al. Fuzzy identification of coal-bearing strata lithology based ondrilling parameter clustering[J]. Journal of Coal Industry, 2019, 44(8): 2328-2335(in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-MTXB201908007.htm
    [9]
    Sair K, Jamai R, Aali N. Review of ground characterization by using instrumented drills for under-ground mining and construction[J]. Rock Mechanics and Rock Engineering, 2016, 49(2): 585-602. doi: 10.1007/s00603-015-0756-4
    [10]
    向杰, 陈建平, 肖克炎, 等. 基于机器学习的三维矿产定量预测: 以四川拉拉铜矿为例[J]. 地质通报, 2019, 38(12): 2010-2021. https://www.cnki.com.cn/Article/CJFDTOTAL-ZQYD201912010.htm

    Xiang J, Chen J P, Xiao K Y, et al. 3D metallogenic prediction based on machine learning: A casestudy of the Lala copper deposit in Sichuan Province[J]. Bulletin of Geology, 2019, 38(12): 2010-2021(in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-ZQYD201912010.htm
    [11]
    王建刚. 基于机器学习的航空高光谱遥感岩性识别技术研究[D]. 北京: 核工业北京地质研究院, 2020.

    Wang J G. Research on lithology recognition technology of aerial hyperspectral remote sensing based on machine learning[D]. Beijing: Beijing Research Institute of Uranium Geology, 2020(in Chinese with English abstract).
    [12]
    房昱纬, 吴振君, 盛谦, 等. 基于超前钻探测试的隧道地层智能识别方法[J]. 岩土力学, 2020, 41(7): 2494-2503. https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX202007036.htm

    Fang Y W, Wu Z J, Sheng Q, et al. Intelligent recognition of tunnel stratum based on advanced drilling tests[J]. Geotechnical Mechanics, 2020, 41(7): 2494-2503(in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX202007036.htm
    [13]
    曹正凤. 随机森林算法优化研究[D]. 北京: 首都经济贸易大学, 2004.

    Cao Z F. Study on optimization of random forests algorithm[D]. Beijing: Capital University of Economics and Trade, 2004(in Chinese with English abstract).
    [14]
    Jan P, Bernard D B, Niko E C V, et al. Random forests as a tool for ecohydrological distribution modelling[J]. Ecological Modelling, 2007, 207(2/4): 304-318.
    [15]
    Lee S L A, Kouzania A Z, Hu E J. Random forest based lung nodule classification aided by clustering[J]. Computerized Medical Imaging and Graphics, 2010, 34(7) 535-542. doi: 10.1016/j.compmedimag.2010.03.006
    [16]
    Auret L, Aldrich C. Change point detection in time series data with random forests[J]. Control Engineering Practice, 2010, 18(8): 990-1002. doi: 10.1016/j.conengprac.2010.04.005
    [17]
    Meinshausen N. Quantile regression forests[J]. Journal of Machine Learning Research, 2006, 7(6): 13-14. http://www.ams.org/mathscinet-getitem?mr=2274394
    [18]
    Dietterich T. An experimental comparison of three methods for constructing ensembles of decision trees: Bagging, boosting and randomization[J]. Machine Learning, 2000, 40(2): 139-157. doi: 10.1023/A:1007607513941
    [19]
    肖勇, 赵云, 涂治东, 等. 基于改进的皮尔逊相关系数的低压配电网拓扑结构校验方法[J]. 电力系统保护与控制, 2019, 47(11): 37-43. doi: 10.7667/PSPC20191106

    Xiao Y, Zhao Y, Tu Z D, et al. Topology checking method for low voltage distribution network based on improved Pearson correlation coefficient[J]. Power System Protection and Control, 2019, 47(11): 37-43(in Chinese with English abstract). doi: 10.7667/PSPC20191106
    [20]
    刘士琛. 面向推荐系统的关键问题研究及应用[D]. 合肥: 中国科学技术大学, 2014.

    Liu S T. Research on the key issues for the recommender systems[D]. Hefei: University of Science and Technology of China, 2014(in Chinese with English abstract).
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article Views(591) PDF Downloads(351) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return