Volume 41 Issue 3
May  2022
Turn off MathJax
Article Contents
Liao Shili, Tao Chunhui, Zhao Jiangnan, Wu Zelong. Application of PXRF in sediment analysis for geochemical prospecting in Dragon Horn area on the southwestern Indian Ridge[J]. Bulletin of Geological Science and Technology, 2022, 41(3): 264-272. doi: 10.19509/j.cnki.dzkq.2021.0068
Citation: Liao Shili, Tao Chunhui, Zhao Jiangnan, Wu Zelong. Application of PXRF in sediment analysis for geochemical prospecting in Dragon Horn area on the southwestern Indian Ridge[J]. Bulletin of Geological Science and Technology, 2022, 41(3): 264-272. doi: 10.19509/j.cnki.dzkq.2021.0068

Application of PXRF in sediment analysis for geochemical prospecting in Dragon Horn area on the southwestern Indian Ridge

doi: 10.19509/j.cnki.dzkq.2021.0068
  • Received Date: 07 Sep 2021
  • Polymetallic sulfides associated with hydrothermal activity near the mid-ocean ridges are importantpotential replacement resources in the future, while their exploration techniques and methods are relatively scarce at present. The Portable X rayFluorescence Spectroscopy(PXRF) is a new technology developed for in situ rapid analysis in field, and it has been applied in outcrops rock geochemical analyzing, and evaluation of soil heavy metal pollution.In this study, we applied PXRF in geochemical composition analyzing of sediments collected from the Dragon Horn area on the Southwest Indian Ridge, to determine possible location of potential hydrothermal actives by the spatial distribution of elements. The results show that sediments in the study area are consist of calcareous sediments, bedrock debris, hydrothermal ore-forming elements, etc.Some samples show relatively high concentrations of hydrothermal ore-forming elements, which are obviously affected by hydrothermal activities. Based on the C-N fractural method, the threshold anomaly of Cu, Zn, Fe, Mn and As were determined.According to their spatial distribution characteristics of the above elements, six anomalousareas were identifiedin the study area, three of which were consistent with known identified hydrothermal areas, and the other three anomalous areas may represent undiscovered hydrothermal activities.This study provides new strategies for hydrothermal sulfide exploration on mid ocean ridges.

     

  • loading
  • [1]
    Herzig P M, Hannington M D. Polymetallic massive sulfides at the modern seafloor: A review[J]. Ore Geology Reviews, 1995, 10(2): 95-115. doi: 10.1016/0169-1368(95)00009-7
    [2]
    马瑶, 赵江南, 廖时理. 模糊层次分析法在西南印度洋中脊46°~52°E多金属硫化物远景区预测中的应用[J]. 地质科技通报, 2020, 39(6): 75-82. doi: 10.19509/j.cnki.dzkq.2020.0622

    Ma Y, Zhao J N, Liao S L. Application of fuzzy analytic hierarchy process to mineral prospectivity mapping of polymetallic sulfide deposits in the Southwest Indian ridge between 46° to 52° E[J]. Bulletin of Geological Science and Technology, 2020, 39(6): 75-82 (in Chinese with English abstract). doi: 10.19509/j.cnki.dzkq.2020.0622
    [3]
    Baker E T. Exploring the ocean for hydrothermal venting: New techniques, new discoveries, new insights[J]. Ore Geology Reviews, 2017, 86: 55-69. doi: 10.1016/j.oregeorev.2017.02.006
    [4]
    German C R, Sparks R S J. Particle recycling in the TAG hydrothermal plume[J]. Earth and Planetary Science Letters, 1993, 116(1/4): 129-134.
    [5]
    Walter P, Stoffers P. Chemical characteristics of metalliferous sediments from eight areas on the Galapagos Rift and East Pacific Rise between 2°N and 42°S[J]. Marine Geology, 1985, 65(3/4): 271-287.
    [6]
    Rona P A. Hydrothermal mineralization at seafloor spreading centers[J]. Earth-Science Reviews, 1984, 20(1): 1-104. doi: 10.1016/0012-8252(84)90080-1
    [7]
    Feely R A, Massoth G J, Baker E T, et al. Tracking the dispersal of hydrothermal plumes from the Juan de Fuca Ridge using suspended matter compositions[J]. Journal of Geophysical Research: Solid Earth(1978-2012), 1992, 97(B3): 3457-3468. doi: 10.1029/91JB03062
    [8]
    Feely R A, Lewison M, Massoth G J, et al. Composition and dissolution of black smoker particulates from active vents on the Juan de Fuca Ridge[J]. Journal of Geophysical Research: Solid Earth(1978-2012), 1987, 92(B11): 11347-11363. doi: 10.1029/JB092iB11p11347
    [9]
    Marchig V, Gundlach H. Iron-rich metalliferous sediments on the East Pacific Rise: Prototype of undifferentiated metalliferous sediments on divergent plate boundaries[J]. Earth and Planetary Science Letters, 1982, 58(3): 361-382. doi: 10.1016/0012-821X(82)90086-3
    [10]
    Kenna T C, Nitsche F O, Herron M M, et al. Evaluation and calibration of a field portable X-ray fluorescence spectrometer for quantitative analysis of siliciclastic soils and sediments[J]. Journal of Analytical Atomic Spectrometry, 2011, 26(2): 395-405. doi: 10.1039/C0JA00133C
    [11]
    Hou X, He Y, Jones B T. Recent advances in portable X-ray fluorescence spectrometry[J]. Applied Spectroscopy Reviews, 2004, 39(1): 1-25. doi: 10.1081/ASR-120028867
    [12]
    Bosco G L. Development and application of portable, hand-held X-ray fluorescence spectrometers[J]. TrAC Trends in Analytical Chemistry, 2013, 45: 121-134. doi: 10.1016/j.trac.2013.01.006
    [13]
    Piorek S. Field-portable X-ray fluorescence spectrometry: Past, present, and future[J]. Field Analytical Chemistry & Technology, 1997, 1(6): 317-329.
    [14]
    Melquiades F L, Appoloni C R. Application of XRF and field portable XRF for environmental analysis[J]. Journal of radioanalytical and nuclear chemistry, 2004, 262(2): 533-541. doi: 10.1023/B:JRNC.0000046792.52385.b2
    [15]
    Dick H J, Lin J, Schouten H. An ultraslow-spreading class of ocean ridge[J]. Nature, 2003, 426: 405-412. doi: 10.1038/nature02128
    [16]
    Georgen J E, Lin J, Dick H J B. Evidence from gravity anomalies for interactions of the Marion and Bouvet hotspotswith the Southwest Indian Ridge: Effects of transform offsets[J]. Earth and Planetary Science Letters, 2001, 187(3/4): 283-300.
    [17]
    Sauter D, Cannat M, Meyzen C, et al. Propagation of a melting anomaly along the ultraslow Southwest Indian Ridge between 46°E and 52°20'E: Interaction with the Crozet hotspot?[J]. Geophysical Journal International, 2009, 179(2): 687-699. doi: 10.1111/j.1365-246X.2009.04308.x
    [18]
    Tao C H, Chen S, Baker E T, et al. Hydrothermal plume mapping as a prospecting tool for seafloor sulfide deposits: A case study at the Zouyu-1 and Zouyu-2 hydrothermal fields in the southern Mid-Atlantic Ridge[J]. Marine Geophysical Research, 2017, 38(1/2): 3-16.
    [19]
    Tao C H, Jr W E S, Lowell R P, et al. Deep high-temperature hydrothermal circulation in a detachment faulting system on the ultra-slow spreading Ridge[J]. Nature communications, 2020, 11: 1300. doi: 10.1038/s41467-020-15062-w
    [20]
    Tao C H, Li H M, Jin X B, et al. Seafloor hydrothermal activity and polymetallic sulfide exploration on the southwest Indian ridge[J]. Chinese science bulletin, 2014, 59(19): 2266-2276. doi: 10.1007/s11434-014-0182-0
    [21]
    Mcarthur J M, Elderfield H. Metal accumulation rates in sediments from Mid-Indian Ocean Ridge and Marie Celeste Fracture Zone[J]. Nature, 1977, 266: 437-439. doi: 10.1038/266437a0
    [22]
    Scott M R, Scott R B, Morse J W, et al. Metal-enriched sediments from the TAG Hydrothermal Field[J]. Nature, 1978, 276: 811-813. doi: 10.1038/276811a0
    [23]
    Liang J, Tao C, Yang W, et al. 230Th/238U dating of sulfide chimneys in the Longqi-1 hydrothermal field, Southwest Indian Ridge[J]. Acta Geologica Sinica: English Edition, 2018, 92: 77-78.
    [24]
    Liao S L, Tao C H, Li H M, et al. Use of portable X-ray fluorescence in the analysis of surficial sediments in the exploration of hydrothermal vents on the Southwest Indian Ridge[J]. Acta Oceanologica Sinica, 2017, 36(7): 66-76. doi: 10.1007/s13131-017-1085-0
    [25]
    石文杰, 魏俊浩, 谭俊, 等. 基于滑动窗口对数标准离差法的地球化学异常识别: 以青海多彩地区1∶5万水系沉积物地球化学测量为例[J]. 地质科技情报, 2019, 38(5): 81-89. https://www.cnki.com.cn/Article/CJFDTOTAL-DZKQ201905008.htm

    Shi W J, Wei J H, Tan J, et al. Identifying the geochemical anomalies using logarithmic standard deviation statistics method based on sliding window: The geochemical survey of 1∶50 000 water sediments in Duocai region of Qinghai Province as an example[J]. Geological Science and Technology Information, 2019, 38(5): 81-89 (in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-DZKQ201905008.htm
    [26]
    Cheng Q M, Agterberg F P, Ballantyne S B. The separation of geochemical anomalies from background by fractal methods[J]. Journal of geochemical exploration, 1994, 51(2): 109-130. doi: 10.1016/0375-6742(94)90013-2
    [27]
    成秋明. 多重分形与地质统计学方法用于勘查地球化学异常空间结构和奇异性分析[J]. 地球科学: 中国地质大学学报, 2001, 26(2): 161-166. doi: 10.3321/j.issn:1000-2383.2001.02.010

    Cheng Q M. Multifractal and geostatistic methods for characterizing local structure and singularity properties of exploration geochemical anomalies[J]. Earth Science: Journal of China University of Geosciences, 2001, 26(2): 161-166 (in Chinese with English abstract). doi: 10.3321/j.issn:1000-2383.2001.02.010
    [28]
    成秋明. 多维分形理论和地球化学元素分布规律[J]. 地球科学: 中国地质大学学报, 2000, 25(3): 311-318. doi: 10.3321/j.issn:1000-2383.2000.03.017

    Cheng Q M. Multifractal theory and geochemical element distribution pattern[J]. Earth Science: Journal of China University of Geosciences, 2000, 25(3): 311-318 (in Chinese with English abstract). doi: 10.3321/j.issn:1000-2383.2000.03.017
    [29]
    成秋明. 空间自相似性与地球物理和地球化学场的分解方法[J]. 地球物理学进展, 2001, 16(2): 8-17. doi: 10.3969/j.issn.1004-2903.2001.02.002

    Cheng Q M. Spatial self-similarity and geophysical and geochemical anomaly decomposition[J]. Progress in Geophysics, 2001, 16(2): 8-17 (in Chinese with English abstract). doi: 10.3969/j.issn.1004-2903.2001.02.002
    [30]
    Arne D C, Mackie R A, Jones S A. The use of property-scale portable X-ray fluorescence data in gold exploration: Advantages and limitations[J]. Geochemistry: Exploration, Environment, Analysis, 2014, 14(3): 233-244. doi: 10.1144/geochem2013-233
    [31]
    Liao S L, Tao C H, Li H M, et al. Surface sediment geochemistry and hydrothermal activity indicators in the Dragon Horn area on the Southwest Indian Ridge[J]. Marine Geology, 2018, 398: 22-34. doi: 10.1016/j.margeo.2017.12.005
    [32]
    Bau M, Koschinsky A. Oxidative scavenging of cerium on hydrous Fe oxide: Evidence from the distribution of rare earth elements and yttrium between Fe oxides and Mn oxides in hydrogenetic ferromanganese crusts[J]. Geochemical Journal, 2009, 43(1): 37-47. doi: 10.2343/geochemj.1.0005
    [33]
    Dunk R M, Mills R A. The impact of oxic alteration on plume-derived transition metals in ridge flank sediments from the East Pacific Rise[J]. Marine geology, 2006, 229(3): 133-157.
    [34]
    Subha Anand S, Rahaman W, Lathika N, et al. Trace elements and Sr, Nd isotope compositions of surface sediments inthe Indian Ocean: An evaluation of sources and processes for sediment transport and dispersal[J]. Geochemistry, Geophysics, Geosystems, 2019, 20(6): 3090-3112. doi: 10.1029/2019GC008332
    [35]
    Hoffman C L, Nicholas S L, Ohnemus D C, et al. Near-field iron and carbon chemistry of non-buoyant hydrothermal plume particles, Southern East Pacific Rise 15°S[J]. Marine Chemistry, 2018, 201: 183-197. doi: 10.1016/j.marchem.2018.01.011
    [36]
    Sun Z L, Cao H, Yin X J, et al. Precipitation and subsequent preservation of hydrothermal Fe-Mn oxides in distal plume sediments on Juan de Fuca Ridge[J]. Journal of Marine Systems, 2018, 187: 128-140. doi: 10.1016/j.jmarsys.2018.06.014
    [37]
    Feely R A, Massoth G J, Trefry J H, et al. Composition and sedimentation of hydrothermal plume particles from North Cleft segment, Juan de Fuca Ridge[J]. Journal of Geophysical Research: Solid Earth, 1994, 99(B3): 4985-5006. doi: 10.1029/93JB02509
    [38]
    German C R, Campbell A C, Edmond J M. Hydrothermal scavenging at the Mid-Atlantic Ridge: Modification of trace element dissolved fluxes[J]. Earth and Planetary Science Letters, 1991, 107(1): 101-114. doi: 10.1016/0012-821X(91)90047-L
    [39]
    Hrischeva E, Scott S D. Geochemistry and morphology of metalliferous sediments and oxyhydroxides from the Endeavour segment, Juan de Fuca Ridge[J]. Geochimica et Cosmochimica Acta, 2007, 71(14): 3476-3497. doi: 10.1016/j.gca.2007.03.024
    [40]
    Trocine R P, Trefry J H. Distribution and chemistry of suspended particles from an active hydrothermal vent site on the Mid-Atlantic Ridge at 26°N[J]. Earth and Planetary Science Letters, 1988, 88(1): 1-15.
    [41]
    German C R, Higgs N C, Thomson J, et al. A geochemical study of metalliferous sediment from the TAG Hydrothermal Mound, 26°08'N, Mid-Atlantic Ridge[J]. Journal of Geophysical Research: Solid Earth, 1993, 98(B6): 9683-9692. doi: 10.1029/92JB01705
    [42]
    Rusakov V Y, Shilov V V, Ryzhenko B N, et al. Mineralogical and geochemical zoning of sediments at the Semenov cluster of hydrothermal fields, 13°31'-13°30'N, Mid-Atlantic Ridge[J]. Geochemistry International, 2013, 51(8): 646-669. doi: 10.1134/S0016702913050066
    [43]
    Liao S L, Zhu C W, Zhou J P, et al. Distal axis sulfide mineralization on the ultraslow-spreading Southwest Indian Ridge: An LA-ICP-MS study of pyrite from the East Longjing-2 hydrothermal field[J]. Acta Oceanologica Sinica, 2021, 40(5): 105-113. doi: 10.1007/s13131-020-1681-2
    [44]
    Lisitzin A P, Lukashin V N, Gordeev V V, et al. Hydrological and geochemical anomalies associated with hydrothermal activity in SW Pacific marginaland back-arc basins[J]. Marine geology, 1997, 142(1): 7-45.
    [45]
    Dekov V M, Petersen S, Garbe-Schönberg C D, et al. Fe-Si-oxyhydroxide deposits at a slow-spreading centre with thickened oceanic crust: The Lilliput hydrothermal field(9°33'S, Mid-Atlantic Ridge)[J]. Chemical Geology, 2010, 278(3/4): 186-200.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article Views(49) PDF Downloads(8) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return