Citation: | Song Xiaoguang, Lu Yan, Liang Shikai, Hu Bin. Analysis of high-fluoride groundwater formation mechanisms and assessment of health risk in Baxia region, Zhangjiakou[J]. Bulletin of Geological Science and Technology, 2022, 41(1): 240-250, 259. doi: 10.19509/j.cnki.dzkq.2021.0070 |
[1] |
徐斌, 张艳. 基于GIS的泾惠渠灌区地下水污染人体健康风险评价[J]. 农业环境科学学报, 2018, 37(5): 992-1000. https://www.cnki.com.cn/Article/CJFDTOTAL-NHBH201805019.htm
Xu B, Zhang Y. GIS-based human health risk assessment of groundwater contamination in the Jinghuiqu irrigation district of China[J]. Journal of Agro-Environment Science, 2018, 37(5): 992-1000(in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-NHBH201805019.htm
|
[2] |
Zhang L, Huang D, Yang J, et al. Probabilistic risk assessment of Chinese residents' exposure to fluoride in improved drinking water in endemicfluorosis areas[J]. Environmental Pollution, 2017, 222: 118-125. doi: 10.1016/j.envpol.2016.12.074
|
[3] |
World Health Organization. Boron in drinking-water: Background document for development of WHO guidelines for drinking-water quality[C]//Anon. Guidelines for drinking-water quality. [S. l.]: World Health Organization, 2004.
|
[4] |
中华人民共和国国家卫生健康委员会. 生活饮用水卫生标准: GB 5749-2006[S]. 北京: 中国标准出版社, 2006.
National Health Commission of the People's Republic of China. Standards for drinking water quality: GB 5749-2006[S]. Beijing: Standards Press of China, 2006(in Chinese).
|
[5] |
中华人民共和国生态环境部. 地下水质量标准: GB/T 14848-2017[S]. 北京: 中国标准出版社, 2017.
Ministry of Ecology and Environment of the People's Republic of China. Standards for drinking water quality: GB/T 14848-2017[S]. Beijing: Standards Press of China, 2017(in Chinese).
|
[6] |
邓安利, 王敏黛, 王帅, 等. 高氟孔隙地下水地球化学成因: 以山西东山调水工程区为例[J]. 地质科技情报, 2015, 34(6): 169-175. https://www.cnki.com.cn/Article/CJFDTOTAL-DZKQ201506024.htm
Deng A L, Wang M D, Wang S, et al. Geochemical genesis of high-fluoride groundwater: A case study in the import region of the Dongshan water transfer project, Shanxi Province[J]. Geological Science and Technology Information, 2015, 34(6): 169-175(in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-DZKQ201506024.htm
|
[7] |
梁川, 苏春利, 吴亚, 等. 大同盆地高氟地下水的分布特征及形成过程分析[J]. 地质科技情报, 2014, 33(2): 154-159. https://www.cnki.com.cn/Article/CJFDTOTAL-DZKQ201402026.htm
Liang C, Su C L, Wu Y, et al. Distribution and geochemical processes for the formation of high fluoride groundwater in Datong Basin[J]. Geological Science and Technology Information, 2014, 33(2): 154-159(in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-DZKQ201402026.htm
|
[8] |
潘欢迎, 邹常健, 毕俊擘, 等. 新疆阿克苏典型山前洪积扇内高氟地下水的化学特征及氟富集机制[J]. 地质科技通报, 2021, 40(3): 194-203. doi: 10.19509/j.cnki.dzkq.2021.0312
Pan H Y, Zou C J, Bi J B, et al. Hydrochemical characteristics and fluoride enrichment mechanisms of high-fluoride groundwater in a typical piedmont proluvial fan in Aksu area, Xinjiang, China[J]. Bulletin of Geological Science and Technology, 2021, 40(3): 194-203(in Chinese with English abstract). doi: 10.19509/j.cnki.dzkq.2021.0312
|
[9] |
徐颖, 李梦雪, 董心月, 等. 氟化工园区及周边地下水健康风险及脆弱性评价[J]. 环境科学学报, 2020, 40(6): 2300-2310. https://www.cnki.com.cn/Article/CJFDTOTAL-HJXX202006041.htm
Xu Y, Li M X, Dong X Y, et al. Health risk and vulnerability assessment of groundwater in fluorine chemical industrial and surrounding areas[J]. Acta Scientiae Circumstantiae, 2020, 40(6): 2300-2310(in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-HJXX202006041.htm
|
[10] |
Rashid A, Farooqi A, Gao X, et al. Geochemical modeling, source apportionment, health risk exposure and control of higher fluoride in groundwater of sub-district Dargai, Pakistan[J]. Chemosphere, 2020, 243: 125409. doi: 10.1016/j.chemosphere.2019.125409
|
[11] |
Parvaiz A, Khattak J A, Hussain I, et al. Salinity enrichment, sources and its contribution to elevated groundwater arsenic and fluoride levels in Rachna Doab, Punjab Pakistan: Stable isotope(δ2H and δ18O) approach as an evidence[J]. Environmental Pollution, 2021, 268: 115710. doi: 10.1016/j.envpol.2020.115710
|
[12] |
吕晓立, 刘景涛, 周冰, 等. 塔城盆地地下水氟分布特征及富集机理[J]. 地学前缘, 2021, 28(2): 426-436. https://www.cnki.com.cn/Article/CJFDTOTAL-DXQY202102031.htm
Lü X L, Liu J T, Zhou B, et al. Distribution characteristics and enrichment mechanism of fluoride in the shallow aquifer of the Tacheng Baisn[J]. Earth Science Frontiers, 2021, 28(2): 426-436(in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-DXQY202102031.htm
|
[13] |
Su C, Wang Y, Xie X, et al. An isotope hydrochemical approach to understand fluoride release into groundwaters of the Datong Basin, Northern China[J]. Environmental Science Process Impacts, 2015, 17(4): 791-801. doi: 10.1039/C4EM00584H
|
[14] |
Li J, Wang Y, Zhu C, et al. Hydrogeochemical processes controlling the mobilization and enrichment of fluoride in groundwater of the North China Plain[J]. Science of the Total Environment, 2020, 730: 138877. doi: 10.1016/j.scitotenv.2020.138877
|
[15] |
杨志光, 尤冰, 霍秋雅. 张家口市下花园区地下水中氟的分布规律及成因探讨[J]. 西部探矿工程, 2020, 32(10): 107-110. doi: 10.3969/j.issn.1004-5716.2020.10.035
Yang Z G, You B, Huo Q Y. The distribution and mechanism discussion of fluoride in the groundwater in the Xiahuayuan District, Zhangjiakou City[J]. West-China Exploration Engineering, 2020, 32(10): 107-110(in Chinese with English abstract). doi: 10.3969/j.issn.1004-5716.2020.10.035
|
[16] |
中华人民共和国生态环境部. 水质采样样品的保存和管理技术规定: HJ 493-2009[S]. 北京: 中国标准出版社, 2009.
Ministry of Ecology and Environment of the People's Republic of China. Water quality sampling-technical regulation of the preservation and handling of samples: HJ 493-2009[S]. Beijing: Standards Press of China, 2009(in Chinese).
|
[17] |
Zimmer K, Zhang Y, Lu P, et al. SUPCRTBL: A revised and extended thermodynamic dataset and software package of SUPCRT92[J]. Computers & Geosciences, 2016, 90: 97-111.
|
[18] |
Parkhurst D, Appelo C. Description of input and examples for PHREEQC version 3: A computer program for speciation, batch-reaction, one-dimensional transport, and inverse geochemical calculations[M]. Colorado: U S Geological Survey, 2013.
|
[19] |
Zhang Y, Hu B, Teng Y, et al. A library of BASIC scripts of reaction rates for geochemical modeling using PHREEQC[J]. Computers & Geosciences, 2019, 133: 104316.
|
[20] |
Wang W, Duan L, Yang X, et al. Shallow groundwater hydro-chemical evolution and simulation with special focus on Guanzhong Basin, China[J]. Environmental Engineering and Management Journal, 2013, 12(7): 1447-1455. doi: 10.30638/eemj.2013.178
|
[21] |
Schoeller H. Qualitative evaluation of groundwater resources: Methods and techniques of groundwater investigation and development[J]. Water Research, 1967, 33: 44-52.
|
[22] |
US EPA. Available information on assessment exposure from pesticides in food[R]. Washington D C: U.S. Environmental Protection Agency Office of Pesticide Programs, 2000.
|
[23] |
Yin S, Xiao Y, Han P, et al. Investigation of groundwater contamination and health implications in a typical semiarid basin of North China[J]. Water, 2020, 12(4): 1137. doi: 10.3390/w12041137
|
[24] |
中华人民共和国国家卫生健康委员会. 中国居民营养与慢性病状况报告(2020年)[M]. 北京: 人民卫生出版社, 2020.
National Health Commission of the People's Republic of China. Report on Chinese residents' chronic diseases and nutrition(2020)[M]. Beijing: People's Medical Publishing House, 2020(in Chinese).
|
[25] |
梁杏, 张婧玮, 蓝坤, 等. 江汉平原地下水化学特征及水流系统分析[J]. 地质科技通报, 2020, 39(1): 21-33. doi: 10.19509/j.cnki.dzkq.2020.0103
Liang X, Zhang J W, Lan K, et al. Hydrochemical characteristics of groundwater and analysis of groundwater flow systems in Jianghan Plain[J]. Bulletin of Geological Science and Technology, 2020, 39(1): 21-33(in Chinese with English abstract). doi: 10.19509/j.cnki.dzkq.2020.0103
|
[26] |
Su C, Wang Y, Xie X, et al. Aqueous geochemistry of high-fluoride groundwater in Datong Basin, Northern China[J]. Journal of Geochemical Exploration, 2013, 135(1): 79-92.
|
[27] |
Xiao J, Jin Z, Zhang F. Geochemical controls on fluoride concentrations in natural waters from the middle Loess Plateau, China[J]. Journal of Geochemical Exploration, 2015, 159: 252-261. doi: 10.1016/j.gexplo.2015.09.018
|
[28] |
左锐, 谷鹏, 滕彦国, 等. 下辽河平原高氟地下水空间分布及成因分析[J]. 水文地质工程地质, 2015, 42(3): 135-141. https://www.cnki.com.cn/Article/CJFDTOTAL-SWDG201503025.htm
Zui R, Gu P, Teng Y G, et al. Spatial distribution and genesis of the high-fluorine groundwater in the Lower Liaohe River Plain[J]. Hydrogeology & Engineering Geology, 2015, 42(3): 135-141(in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-SWDG201503025.htm
|
[29] |
Gao X, Wang Y, Li Y, et al. Enrichment of fluoride in groundwater under the impact of saline water intrusion at the salt lake area of Yuncheng Basin, northern China[J]. Environmental Geology, 2007, 53(4): 795-803. doi: 10.1007/s00254-007-0692-z
|
[30] |
胡斌, 滕彦国, 李腾飞, 等. 傍河水源地取水井堵塞特征及缓解途径概述[J]. 地质科技情报, 2016, 35(4): 178-183, 191. https://www.cnki.com.cn/Article/CJFDTOTAL-DZKQ201604028.htm
Hu B, Teng Y G, Li T F, et al. Clogging characteristics of riverbank filtration on wells and its alleviating approaches[J]. Geological Science and Technology Information, 2016, 35(4): 178-183, 191(in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-DZKQ201604028.htm
|
[31] |
Hu B, Teng Y G, Zhai Y Z, et al. Riverbank filtration in China: A review and perspective[J]. Journal of Hydrology, 2016, 541: 914-927. doi: 10.1016/j.jhydrol.2016.08.004
|