Volume 41 Issue 1
Jan.  2022
Turn off MathJax
Article Contents
Song Xiaoguang, Lu Yan, Liang Shikai, Hu Bin. Analysis of high-fluoride groundwater formation mechanisms and assessment of health risk in Baxia region, Zhangjiakou[J]. Bulletin of Geological Science and Technology, 2022, 41(1): 240-250, 259. doi: 10.19509/j.cnki.dzkq.2021.0070
Citation: Song Xiaoguang, Lu Yan, Liang Shikai, Hu Bin. Analysis of high-fluoride groundwater formation mechanisms and assessment of health risk in Baxia region, Zhangjiakou[J]. Bulletin of Geological Science and Technology, 2022, 41(1): 240-250, 259. doi: 10.19509/j.cnki.dzkq.2021.0070

Analysis of high-fluoride groundwater formation mechanisms and assessment of health risk in Baxia region, Zhangjiakou

doi: 10.19509/j.cnki.dzkq.2021.0070
  • Received Date: 31 Mar 2021
    Available Online: 02 Mar 2022
  • Totally, 391 unconfined groundwater samples(depth ≤ 100 m) were collected in order to investigate the high-fluoride groundwater formation causes, and explore the potential impacts on drinking water safety to local residents in Baxia region, Zhangjiakou.Hydrochemical analysis, graphical method, ions ratio method and saturation index calculation method were applied in this study to analyze the spatial distribution and formation mechanisms of high-F- groundwater.Meanwhile, the non-carcinogenic human health risk assessment model recommended by US EPA was also used to evaluate health risk of four groups of receptors.The results indicate that high-F- groundwater(F->1.5 mg/L) mainly distribute in the low-lying and piedmont zone of the downstream of high-F- magmatic rock, enclosed basin, runoff stagnant area along the river and other areas.The dissolution and precipitation of the minerals, crystal lattice replacement under alkaline environment, ion exchange are the major mechanisms for high-F- groundwater formation in the study area.Salt effect can affect F- enrichment in groundwater, but it is not the principal mechanism.There is no correlation between agricultural activities and F- enrichment in groundwater.Additionally, the power plants, steelworks and other factories distributed in Baxia region are the potential pollution sources of the Yongding River system.The impacts of these industrial contamination sources on high-F- groundwater formation cannot be ignored.The hazard index values of infants, children, adult males and adult females were 1.20, 0.74, 0.69 and 0.56, respectively, demonstrating the younger people are more susceptible to fluoride contamination.Moreover, the adult females are more resistant to fluoride contamination than the adult males in the study area.Thus, it is suggested to develop the multi-source combined water supply mode for high risk areas and improve the efficiency of defluorination, in order to ensure water supply safety.

     

  • loading
  • [1]
    徐斌, 张艳. 基于GIS的泾惠渠灌区地下水污染人体健康风险评价[J]. 农业环境科学学报, 2018, 37(5): 992-1000. https://www.cnki.com.cn/Article/CJFDTOTAL-NHBH201805019.htm

    Xu B, Zhang Y. GIS-based human health risk assessment of groundwater contamination in the Jinghuiqu irrigation district of China[J]. Journal of Agro-Environment Science, 2018, 37(5): 992-1000(in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-NHBH201805019.htm
    [2]
    Zhang L, Huang D, Yang J, et al. Probabilistic risk assessment of Chinese residents' exposure to fluoride in improved drinking water in endemicfluorosis areas[J]. Environmental Pollution, 2017, 222: 118-125. doi: 10.1016/j.envpol.2016.12.074
    [3]
    World Health Organization. Boron in drinking-water: Background document for development of WHO guidelines for drinking-water quality[C]//Anon. Guidelines for drinking-water quality. [S. l.]: World Health Organization, 2004.
    [4]
    中华人民共和国国家卫生健康委员会. 生活饮用水卫生标准: GB 5749-2006[S]. 北京: 中国标准出版社, 2006.

    National Health Commission of the People's Republic of China. Standards for drinking water quality: GB 5749-2006[S]. Beijing: Standards Press of China, 2006(in Chinese).
    [5]
    中华人民共和国生态环境部. 地下水质量标准: GB/T 14848-2017[S]. 北京: 中国标准出版社, 2017.

    Ministry of Ecology and Environment of the People's Republic of China. Standards for drinking water quality: GB/T 14848-2017[S]. Beijing: Standards Press of China, 2017(in Chinese).
    [6]
    邓安利, 王敏黛, 王帅, 等. 高氟孔隙地下水地球化学成因: 以山西东山调水工程区为例[J]. 地质科技情报, 2015, 34(6): 169-175. https://www.cnki.com.cn/Article/CJFDTOTAL-DZKQ201506024.htm

    Deng A L, Wang M D, Wang S, et al. Geochemical genesis of high-fluoride groundwater: A case study in the import region of the Dongshan water transfer project, Shanxi Province[J]. Geological Science and Technology Information, 2015, 34(6): 169-175(in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-DZKQ201506024.htm
    [7]
    梁川, 苏春利, 吴亚, 等. 大同盆地高氟地下水的分布特征及形成过程分析[J]. 地质科技情报, 2014, 33(2): 154-159. https://www.cnki.com.cn/Article/CJFDTOTAL-DZKQ201402026.htm

    Liang C, Su C L, Wu Y, et al. Distribution and geochemical processes for the formation of high fluoride groundwater in Datong Basin[J]. Geological Science and Technology Information, 2014, 33(2): 154-159(in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-DZKQ201402026.htm
    [8]
    潘欢迎, 邹常健, 毕俊擘, 等. 新疆阿克苏典型山前洪积扇内高氟地下水的化学特征及氟富集机制[J]. 地质科技通报, 2021, 40(3): 194-203. doi: 10.19509/j.cnki.dzkq.2021.0312

    Pan H Y, Zou C J, Bi J B, et al. Hydrochemical characteristics and fluoride enrichment mechanisms of high-fluoride groundwater in a typical piedmont proluvial fan in Aksu area, Xinjiang, China[J]. Bulletin of Geological Science and Technology, 2021, 40(3): 194-203(in Chinese with English abstract). doi: 10.19509/j.cnki.dzkq.2021.0312
    [9]
    徐颖, 李梦雪, 董心月, 等. 氟化工园区及周边地下水健康风险及脆弱性评价[J]. 环境科学学报, 2020, 40(6): 2300-2310. https://www.cnki.com.cn/Article/CJFDTOTAL-HJXX202006041.htm

    Xu Y, Li M X, Dong X Y, et al. Health risk and vulnerability assessment of groundwater in fluorine chemical industrial and surrounding areas[J]. Acta Scientiae Circumstantiae, 2020, 40(6): 2300-2310(in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-HJXX202006041.htm
    [10]
    Rashid A, Farooqi A, Gao X, et al. Geochemical modeling, source apportionment, health risk exposure and control of higher fluoride in groundwater of sub-district Dargai, Pakistan[J]. Chemosphere, 2020, 243: 125409. doi: 10.1016/j.chemosphere.2019.125409
    [11]
    Parvaiz A, Khattak J A, Hussain I, et al. Salinity enrichment, sources and its contribution to elevated groundwater arsenic and fluoride levels in Rachna Doab, Punjab Pakistan: Stable isotope(δ2H and δ18O) approach as an evidence[J]. Environmental Pollution, 2021, 268: 115710. doi: 10.1016/j.envpol.2020.115710
    [12]
    吕晓立, 刘景涛, 周冰, 等. 塔城盆地地下水氟分布特征及富集机理[J]. 地学前缘, 2021, 28(2): 426-436. https://www.cnki.com.cn/Article/CJFDTOTAL-DXQY202102031.htm

    Lü X L, Liu J T, Zhou B, et al. Distribution characteristics and enrichment mechanism of fluoride in the shallow aquifer of the Tacheng Baisn[J]. Earth Science Frontiers, 2021, 28(2): 426-436(in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-DXQY202102031.htm
    [13]
    Su C, Wang Y, Xie X, et al. An isotope hydrochemical approach to understand fluoride release into groundwaters of the Datong Basin, Northern China[J]. Environmental Science Process Impacts, 2015, 17(4): 791-801. doi: 10.1039/C4EM00584H
    [14]
    Li J, Wang Y, Zhu C, et al. Hydrogeochemical processes controlling the mobilization and enrichment of fluoride in groundwater of the North China Plain[J]. Science of the Total Environment, 2020, 730: 138877. doi: 10.1016/j.scitotenv.2020.138877
    [15]
    杨志光, 尤冰, 霍秋雅. 张家口市下花园区地下水中氟的分布规律及成因探讨[J]. 西部探矿工程, 2020, 32(10): 107-110. doi: 10.3969/j.issn.1004-5716.2020.10.035

    Yang Z G, You B, Huo Q Y. The distribution and mechanism discussion of fluoride in the groundwater in the Xiahuayuan District, Zhangjiakou City[J]. West-China Exploration Engineering, 2020, 32(10): 107-110(in Chinese with English abstract). doi: 10.3969/j.issn.1004-5716.2020.10.035
    [16]
    中华人民共和国生态环境部. 水质采样样品的保存和管理技术规定: HJ 493-2009[S]. 北京: 中国标准出版社, 2009.

    Ministry of Ecology and Environment of the People's Republic of China. Water quality sampling-technical regulation of the preservation and handling of samples: HJ 493-2009[S]. Beijing: Standards Press of China, 2009(in Chinese).
    [17]
    Zimmer K, Zhang Y, Lu P, et al. SUPCRTBL: A revised and extended thermodynamic dataset and software package of SUPCRT92[J]. Computers & Geosciences, 2016, 90: 97-111.
    [18]
    Parkhurst D, Appelo C. Description of input and examples for PHREEQC version 3: A computer program for speciation, batch-reaction, one-dimensional transport, and inverse geochemical calculations[M]. Colorado: U S Geological Survey, 2013.
    [19]
    Zhang Y, Hu B, Teng Y, et al. A library of BASIC scripts of reaction rates for geochemical modeling using PHREEQC[J]. Computers & Geosciences, 2019, 133: 104316.
    [20]
    Wang W, Duan L, Yang X, et al. Shallow groundwater hydro-chemical evolution and simulation with special focus on Guanzhong Basin, China[J]. Environmental Engineering and Management Journal, 2013, 12(7): 1447-1455. doi: 10.30638/eemj.2013.178
    [21]
    Schoeller H. Qualitative evaluation of groundwater resources: Methods and techniques of groundwater investigation and development[J]. Water Research, 1967, 33: 44-52.
    [22]
    US EPA. Available information on assessment exposure from pesticides in food[R]. Washington D C: U.S. Environmental Protection Agency Office of Pesticide Programs, 2000.
    [23]
    Yin S, Xiao Y, Han P, et al. Investigation of groundwater contamination and health implications in a typical semiarid basin of North China[J]. Water, 2020, 12(4): 1137. doi: 10.3390/w12041137
    [24]
    中华人民共和国国家卫生健康委员会. 中国居民营养与慢性病状况报告(2020年)[M]. 北京: 人民卫生出版社, 2020.

    National Health Commission of the People's Republic of China. Report on Chinese residents' chronic diseases and nutrition(2020)[M]. Beijing: People's Medical Publishing House, 2020(in Chinese).
    [25]
    梁杏, 张婧玮, 蓝坤, 等. 江汉平原地下水化学特征及水流系统分析[J]. 地质科技通报, 2020, 39(1): 21-33. doi: 10.19509/j.cnki.dzkq.2020.0103

    Liang X, Zhang J W, Lan K, et al. Hydrochemical characteristics of groundwater and analysis of groundwater flow systems in Jianghan Plain[J]. Bulletin of Geological Science and Technology, 2020, 39(1): 21-33(in Chinese with English abstract). doi: 10.19509/j.cnki.dzkq.2020.0103
    [26]
    Su C, Wang Y, Xie X, et al. Aqueous geochemistry of high-fluoride groundwater in Datong Basin, Northern China[J]. Journal of Geochemical Exploration, 2013, 135(1): 79-92.
    [27]
    Xiao J, Jin Z, Zhang F. Geochemical controls on fluoride concentrations in natural waters from the middle Loess Plateau, China[J]. Journal of Geochemical Exploration, 2015, 159: 252-261. doi: 10.1016/j.gexplo.2015.09.018
    [28]
    左锐, 谷鹏, 滕彦国, 等. 下辽河平原高氟地下水空间分布及成因分析[J]. 水文地质工程地质, 2015, 42(3): 135-141. https://www.cnki.com.cn/Article/CJFDTOTAL-SWDG201503025.htm

    Zui R, Gu P, Teng Y G, et al. Spatial distribution and genesis of the high-fluorine groundwater in the Lower Liaohe River Plain[J]. Hydrogeology & Engineering Geology, 2015, 42(3): 135-141(in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-SWDG201503025.htm
    [29]
    Gao X, Wang Y, Li Y, et al. Enrichment of fluoride in groundwater under the impact of saline water intrusion at the salt lake area of Yuncheng Basin, northern China[J]. Environmental Geology, 2007, 53(4): 795-803. doi: 10.1007/s00254-007-0692-z
    [30]
    胡斌, 滕彦国, 李腾飞, 等. 傍河水源地取水井堵塞特征及缓解途径概述[J]. 地质科技情报, 2016, 35(4): 178-183, 191. https://www.cnki.com.cn/Article/CJFDTOTAL-DZKQ201604028.htm

    Hu B, Teng Y G, Li T F, et al. Clogging characteristics of riverbank filtration on wells and its alleviating approaches[J]. Geological Science and Technology Information, 2016, 35(4): 178-183, 191(in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-DZKQ201604028.htm
    [31]
    Hu B, Teng Y G, Zhai Y Z, et al. Riverbank filtration in China: A review and perspective[J]. Journal of Hydrology, 2016, 541: 914-927. doi: 10.1016/j.jhydrol.2016.08.004
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article Views(471) PDF Downloads(71) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return