Volume 41 Issue 1
Jan.  2022
Turn off MathJax
Article Contents
Sun Hongli, Wang Guiling, Lin Wenjing. Distribution characteristics and enrichment mechanism of TDS geothermal water in Xining Basin[J]. Bulletin of Geological Science and Technology, 2022, 41(1): 278-287, 299. doi: 10.19509/j.cnki.dzkq.2021.0079
Citation: Sun Hongli, Wang Guiling, Lin Wenjing. Distribution characteristics and enrichment mechanism of TDS geothermal water in Xining Basin[J]. Bulletin of Geological Science and Technology, 2022, 41(1): 278-287, 299. doi: 10.19509/j.cnki.dzkq.2021.0079

Distribution characteristics and enrichment mechanism of TDS geothermal water in Xining Basin

doi: 10.19509/j.cnki.dzkq.2021.0079
  • Received Date: 20 Mar 2021
    Available Online: 02 Mar 2022
  • The high concentration of TDS in most of the geothermal water in Xining Basin greatly restricted the availability of geothermal water.In order to provide reference value for the later development and utilization of geothermal resources, the enrichment mechanisms of TDS were identified.Based on the analysis of major and trace components of hot and cold underground water along the line from Yaoshuitan to central basin, the distribution characteristics and enrichment mechanism of TDS in the basin were discussed.It was shown that the groundwater changed from fresh water to brine with hydrochemical types changed from HCO3-Ca·Mg to SO4·Cl-Na and SO4-Na, characterized by continental sedimentary water.The metamorphic degree gradually increased from the edge to the central part of the basin.The enrichment mechanisms of TDS were also significantly different in different regions of the basin.On the margin, the precipitation infiltration, minerals' dissolution and mixing among different aquifer were the dominated mechanisms; In Huangshui transitional zone, evaporation, mixing and water-rock interaction were the main mechanisms; while in the central basin, the dominated factors were the mixing of deep sediments or saline material upwelling with hydrothermal from the deep and the water-rock interaction in closed environment.

     

  • loading
  • [1]
    王贵玲, 刘彦广, 朱喜, 等. 中国地热资源现状及发展趋势[J]. 地学前缘, 2020, 27(1): 1-9. https://www.cnki.com.cn/Article/CJFDTOTAL-DXQY202001002.htm

    Wang G L, Liu Y G, Zhu X, et al. The status and development trend of geothermal resources in China[J]. Earth Science Frontiers, 2020, 27(1): 1-9(in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-DXQY202001002.htm
    [2]
    Yw A, Yl A, Jd B, et al. Geothermal energy in China: Status, challenges, and policy recommendations[J]. Utilities Policy, 2020, 3(19): 64. http://www.sciencedirect.com/science/article/pii/S0957178720300151
    [3]
    马峰, 蔺文静, 郎旭娟, 等. 我国干热岩资源潜力区深部热结构[J]. 地质科技情报, 2015, 34(6): 176-181. https://www.cnki.com.cn/Article/CJFDTOTAL-DZKQ201506025.htm

    Ma F, Lin W J, Lang X J, et al. Deep geothermal structures of potential hot dry rock resources area in China[J]. Geological Science and Technology Information. 2015, 34(6): 176-181(in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-DZKQ201506025.htm
    [4]
    Alimonti C, Soldo E, Scrocca D. Looking forward to a decarbonized era: Geothermal potential assessment for oil & gas fields in Italy[J]. Geothermics, 2021, 93(24): 102070. http://www.sciencedirect.com/science/article/pii/S0375650521000304
    [5]
    Zhang R, Wang G, Shen X, et al. Is geothermal heating environmentally superior than coal fired heating in China?[J]. Renewable and Sustainable Energy Reviews, 2020, 131: 110014. doi: 10.1016/j.rser.2020.110014
    [6]
    刘德民, 张昌生, 孙明行, 等. 干热岩勘查评价指标与形成条件[J]. 地质科技通报, 2021, 40(3): 1-11. https://www.cnki.com.cn/Article/CJFDTOTAL-DZKQ202103001.htm

    Liu D M, Zhang C S, Sun M X, et al. Evaluation indexes and formation conditions of hot dry rock exploration[J]. Bulletin of Geological Science and Technology, 2021, 40(3): 1-11(in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-DZKQ202103001.htm
    [7]
    王思琪, 张保建, 李燕燕, 等. 雄安新区高阳地热田东北部深部古潜山聚热机制[J]. 地质科技通报, 2021, 40(3): 12-21.

    Wang S Q, Zhang B J, Li Y Y, et al. Heat accumulation mechanism of deep ancient buried hill in the northeast of Gaoyang geothermal field, Xiong'an New Area[J]. Bulletin of Geological Science and Technology, 2021, 40(3): 12-21(in Chinese with English abstract).
    [8]
    赵振, 罗银飞, 孟梦, 等. 青海省地热资源概况及勘查开发利用部署初步研究[J]. 青海环境, 2013, 23(3): 130-135. doi: 10.3969/j.issn.1007-2454.2013.03.006

    Zhao Z, Luo Y F, Meng M, et al. A preliminary study on the general situation of geothermal resources and the deployment of exploration, development and utilization in Qinghai Province[J]. Qinghai Environment, 2013, 23(3): 130-135(in Chinese with English abstract). doi: 10.3969/j.issn.1007-2454.2013.03.006
    [9]
    郎旭娟, 刘峰, 刘志明, 等. 青海省贵德盆地大地热流研究[J]. 地质科技情报, 2016, 35(3): 227-232. https://www.cnki.com.cn/Article/CJFDTOTAL-DZKQ201603031.htm

    Lang X J, Liu F, Liu Z M, et al. Terrestrial heat flow in Guide Basin, Qinghai[J]. Geological Science and Technology Information, 2016, 35(3): 227-232(in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-DZKQ201603031.htm
    [10]
    王斌, 何世豪, 李百祥. 从地球物理场信息分析西宁盆地地热地质条件[J]. 西北地震学报, 2011, 33(2): 149-154. https://www.cnki.com.cn/Article/CJFDTOTAL-ZBDZ201102009.htm

    Wang B, He S H, Li B X. Analysis on geothermal geological condition of Xining Basin on the basis of characteristic of geophysical field[J]. Northwestern Seismological Journal, 2011, 33(2): 149-154(in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-ZBDZ201102009.htm
    [11]
    孙恺. 西宁盆地地下热水循环机制与资源评价[D]. 西安: 西北大学, 2015.

    Sun K. Geothermal water circulation mechanism and resource evaluation in Xining Basin[D]. Xi'an: Northwestern University, 2015 (in Chinese with English abstract).
    [12]
    张森琦, 李长辉, 孙王勇, 等. 西宁盆地热储构造概念模型的建立[J]. 地质通报, 2008, 27(1): 126-136. doi: 10.3969/j.issn.1671-2552.2008.01.012

    Zhang S Q, Li C H, Sun W Y, et al. Construction of the conceptual model of thermal r eservoir structure of the Xining Basin, China[J]. Geological Bulletin of China, 2008, 27(1): 126-136(in Chinese with English abstract). doi: 10.3969/j.issn.1671-2552.2008.01.012
    [13]
    赵振, 于漂罗, 陈惠娟, 等. 青海省西宁地热田成因分析及资源评价[J]. 中国地质, 2015, 42(3): 803-810. doi: 10.3969/j.issn.1000-3657.2015.03.029

    Zhao Z, Yu P L, Chen H J, et al. Genetic analysis and resource evaluation of the Xining geothermal field in Qinghai Province[J]. Geology in China, 2015, 42(3): 803-810(in Chinese with English abstract). doi: 10.3969/j.issn.1000-3657.2015.03.029
    [14]
    李惠娣, 张森琦, 白嘉启, 等. 西宁药水滩地热田水化学特征及热水起源初探[J]. 地质学报, 2007, 81(9): 141-146. https://www.cnki.com.cn/Article/CJFDTOTAL-DZXE200709014.htm

    Li H D, Zhang S Q, Bai J Q, et al. Hydrochemistry and origin of the Yaoshuitan geothermal field, Xining, Qinghai[J]. Acta Geologica Science, 2007, 81(9): 141-146(in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-DZXE200709014.htm
    [15]
    徐博, 尚小刚, 李华, 等. 青海省湟中县药水滩地热田地质特征与经济社会意义[J]. 青海国土经略, 2019, 95(3): 74-77. https://www.cnki.com.cn/Article/CJFDTOTAL-GTJL201903035.htm

    Xu B, Shang X G, Li H, et al. Geological characteristics and economic and social significance of hot field in Yaoshuitan, Huangzhong County, Qinghai Province[J]. Land Strategy of Qinghai, 2019, 95(3): 74-77(in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-GTJL201903035.htm
    [16]
    Tan H, Zhang W, Chen J, et al. Isotope and geochemical study for geothermal assessment of the Xining Basin of the northeastern Tibetan Plateau[J]. Geothermics, 2012, 42(4): 47-55. http://www.onacademic.com/detail/journal_1000035051154310_118f.html
    [17]
    李成英, 韩积斌, 黄鑫, 等. 西宁市海湖新区地下热水形成的机理[J]. 盐湖研究, 2017, 25(2): 13-20. https://www.cnki.com.cn/Article/CJFDTOTAL-YHYJ201702003.htm

    Li C Y, Han J B, Huang X, et al. Formation mechanism of geothermal water in New Haihu District, Xining City[J]. Journal og Saltlake Research, 2017, 25(2): 13-20(in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-YHYJ201702003.htm
    [18]
    尚小刚. 青海省威远镇地热田热储特征及其开发利用潜力评价[D]. 北京: 中国地质大学(北京), 2013.

    Shang X G. Heat storage characteristics and development and utilization potential evaluation of geothermal field in Weiyuan Town, Qinghai Province[D]. Beijing: China University of Geosciences(Beijing), 2013(in Chinese with English abstract).
    [19]
    张森琦. 西宁盆地地热地质[M]. 北京: 地质出版社, 2013.

    Zhang S Q. Geothermal geology of Xining Basin[M]. Beijing: Geological Publishing House, 2013(in Chinese).
    [20]
    Sun Z, Rui M, Wang Y, et al. Hydrogeological and hydrogeochemical control of groundwater salinity in an arid inland basin: Dunhuang Basin, northwestern China[J]. Hydrological Processes, 2016, 30(12): 1884-1902. doi: 10.1002/hyp.10760
    [21]
    Singh P, Mukherjee S. Chemical signature detection of groundwater and geothermal waters for evidence of crustal deformation along fault zones[J]. Journal of Hydrology, 2019, 582(4): 124459. http://www.sciencedirect.com/science/article/pii/S0022169419311941
    [22]
    Bloomfield J P, Lewis M A, Newell A J, et al. Characterising variations in the salinity of deep groundwater systems: A case study from Great Britain(GB)[J]. Journal of Hydrology: Regional Studies, 2020, 28: 100684. doi: 10.1016/j.ejrh.2020.100684
    [23]
    Sun Z, Rui M, Wang Y, et al. Hydrogeological and hydrogeochemical control of groundwater salinity in an arid inland basin: Dunhuang Basin, northwestern China[J]. Hydrological ProcHydrological Processesrnesses, 2016, 30(12): 1884-1902. doi: 10.1002/hyp.10760
    [24]
    Xu X Y, Xiong G Y, Chen G Q, et al. Characteristics of coastal aquifer contamination by seawater intrusion and anthropogenic activities in the coastal areas of the Bohai Sea, eastern China[J]. Journal of Asian Earth Sciences, 2021, 5(18): 104830. http://www.sciencedirect.com/science/article/pii/S1367912021001681
    [25]
    李成城. 运城盆地高氟地下咸水成因机制研究[D]. 武汉: 中国地质大学(武汉), 2018.

    Li Y C. Genesis of high fluoride saline groundwater in Yuncheng Basin, Northern China[D]. Wuhan: China University of Geosciences(Wuhan), 2018(in Chinese with English abstract).
    [26]
    刘宏伟, 陈社明, 郭旭, 等. 潍北平原海(咸)水入侵现状评价[J]. 地质科技情报, 2017, 36(1): 213-218. https://www.cnki.com.cn/Article/CJFDTOTAL-DZKQ201701027.htm

    Liu H W, Chen S M, Guo X, et al. Evaluation of present sea/saltwater intrusion into Weibei Plain[J]. Geological Science and Technology Information, 2017, 36(1): 213-218(in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-DZKQ201701027.htm
    [27]
    蔡义汉. 地热直接利用[M]. 天津: 天津大学出版社, 2004.

    Cai Y H. Geothermal direct use[M]. Tianjing: Tianjin University Press, 2004(in Chinese).
    [28]
    Mao X, Zhu D, Ndikubwimana I, et al. The mechanism of high-salinity thermal groundwater in Xinzhou geothermal field, South China: Insight from water chemistry and stable isotopes[J]. Journal of Hydrology, 2021, 593(2): 125889. http://www.sciencedirect.com/science/article/pii/S0022169420313500
    [29]
    石维栋, 张森琦, 周金元, 等. 西宁盆地北西缘地下热水分布特征[J]. 中国地质, 2006, 33(5): 1131-1136. doi: 10.3969/j.issn.1000-3657.2006.05.024

    Shi W D, Zhang S Q, Zhou J Y, et al. Distribution characteristics of geothermal water on the northwestern margin of Xining basin[J]. Geology in China, 2006, 33(5): 1131-1136(in Chinese with English abstract). doi: 10.3969/j.issn.1000-3657.2006.05.024
    [30]
    汤洪康, 秦成明. 青海省西宁市地下热水资源调查评价报告[R]. 西宁: 青海省水文地质工程地质勘察院, 2003.

    Tang H K, Qin C M. Investigation and evaluation report on geothermal water resources in Xining City, Qinghai Province[R]. Xining: Qinghai Hydrogeological Engineering Geological Survey Institute, 2013(in Chinese).
    [31]
    孙红丽, 马峰, 蔺文静, 等. 西藏高温地热田地球化学特征及地热温标应用[J]. 地质科技情报, 2015, 34(3): 171-177. https://www.cnki.com.cn/Article/CJFDTOTAL-DZKQ201503024.htm

    Sun H L, Ma F, Lin W J, et al. Geochemical Characteristics and Geothermometer Application in High Temperature Geothermal Field in Tibet[J]. Geological Science and Technology Information. 2015, 34(3): 171-177(in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-DZKQ201503024.htm
    [32]
    Arnórsson S, Andrésdóttir A. Processes controlling the distribution of boron and chlorine in natural waters in Iceland. Geochimica et Cosmochimica Acta, 1995, 59(20), 4125-4146. doi: 10.1016/0016-7037(95)00278-8
    [33]
    沈照理. 水文地球化学基础[M]. 北京: 地质出版社, 1993.

    Shen Z L. Fundamentals of hydrogeochemistry[M]. Beijing: Geological Publishing House, 1993(in Chinese).
    [34]
    高春亮, 余俊清, 展大鹏, 等. 柴达木盆地盐湖硼矿资源的形成和分布特征[J]. 盐湖研究, 2009, 17(4): 6-13. https://www.cnki.com.cn/Article/CJFDTOTAL-YHYJ200904004.htm

    Gao C L, Yu J Q, Zhan D P, et al. Formation and Distribution Characteristics of Boron Resource in Salt Lakes of Qaidam Basin[J]. Salt Lake Research, 2009, 17(4): 6-13(in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-YHYJ200904004.htm
    [35]
    Shand P, Darbyshire D P F, Love A J, et al. Sr isotopes in natural waters: Applications to source characterisation and water-rock interaction in contrasting landscapes[J]. Applied Geochemistry, 2009, 24(4): 574-586. doi: 10.1016/j.apgeochem.2008.12.011
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article Views(279) PDF Downloads(39) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return