Volume 42 Issue 1
Jan.  2023
Turn off MathJax
Article Contents
Li Shengwei, Wei Meihua, Huang Ting, Liu Qiang. Zircon U-Pb geochronology of the Gongzhu Co gneiss in the Zhongba block from Ali, Tibet and its geological significance[J]. Bulletin of Geological Science and Technology, 2023, 42(1): 191-203. doi: 10.19509/j.cnki.dzkq.2021.0085
Citation: Li Shengwei, Wei Meihua, Huang Ting, Liu Qiang. Zircon U-Pb geochronology of the Gongzhu Co gneiss in the Zhongba block from Ali, Tibet and its geological significance[J]. Bulletin of Geological Science and Technology, 2023, 42(1): 191-203. doi: 10.19509/j.cnki.dzkq.2021.0085

Zircon U-Pb geochronology of the Gongzhu Co gneiss in the Zhongba block from Ali, Tibet and its geological significance

doi: 10.19509/j.cnki.dzkq.2021.0085
  • Received Date: 07 Jul 2021
  • The Zhongba block, an important tectonic unit of the western segment of the Indus-Tsangpo suture zone (ITSZ) in southern Tibet, is significant for determining tectonic affinity and paleogeographic reconstruction along the northern margin of the Gondwana. However, whether the continental basement of the Zhongba block exists is still a controversial issue. In this contribution, integrated with field observations, whole-rock geochemistry and zircon geochronology allow us to identify a biotite-plagioclase gneiss suite in the southern region of Gongzhu Co from the central Zhongba block. The gneiss has 64.09%-69.87% SiO2, 12.18%-18.30% Al2O3, 0.55%-0.79% TiO2 and 2.53%-3.54% K2O. It is enriched in light rare earth elements (LREEs) and has a high LREE/HREE ratio.It was proposed that the protoliths of the gneiss may be sedimentary rocks, dominated by feldspar sandstones, which had formed in an active continental marginal environment. Zircon dating result shows that the peak ages of inherited zircon cores are 950 Ma, 1600 Ma, and 2500 Ma, respectively, with the youngest age of ~630 Ma. Moreover, the metamorphic zircon rim yielded a weighted mean age of ~550 Ma. Based on these results, the Gongzhu Co gneiss was supposed to form in the Late Neoproterozoic (630-550 Ma) and subsequently underwent a high-grade metamorphism. Combined with previous results, the Gongzhu Co gneiss should represent the continental basement of the Zhongba block. This further implies that the Zhongba block belonged to northern margin of the Indian continent. Therefore, this study provides vigorous evidence for clarifying the characteristics of continental basement as well as tectonic affinity of the Zhongba block.

     

  • loading
  • [1]
    刘飞, 杨经绥, 连东洋, 等. 西藏雅鲁藏布江缝合带西段南北亚带蛇绿岩的成因探讨[J]. 岩石学报, 2015, 31(12): 3609-3628. https://www.cnki.com.cn/Article/CJFDTOTAL-YSXB201512008.htm

    Liu F, Yang J S, Lian D Y, et al. Geogenesis and characteristics of the western part of the Yarlung Zangbo ophiolites, Tibet[J]. Acta Petrologica Sinica, 2015, 31(12): 3609-3628(in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-YSXB201512008.htm
    [2]
    刘强, 邓玉彪, 向树元, 等. 藏南仲巴地体早奥陶世构造-热事件及其地质意义[J]. 地球科学, 2017, 42(6): 881-890. https://www.cnki.com.cn/Article/CJFDTOTAL-DQKX201706003.htm

    Liu Q, Deng Y B, Xiang S Y, et al. Early Ordovician tectono-thermal event in Zhongba terrane and its geological significance[J]. Earth Science, 2017, 42(6): 881-890(in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-DQKX201706003.htm
    [3]
    Pullen A, Kapp P, DeCelles P G, et al. Cenozoic anatexis and exhumation of Tethyan sequence rocks in the Xiao Gurla Range, Southwest Tibet[J]. Tectonophysics, 2011, 501(1/4): 28-40.
    [4]
    Yin A, Harrison T M. Geologic evolution of the Himalayan-Tibetan orogen[J]. Annual Review of Earth and Planetary Sciences, 2000, 28: 211-280. doi: 10.1146/annurev.earth.28.1.211
    [5]
    Pan G T, Wang L Q, Li R S, et al. Tectonic evolution of the Qinghai-Tibet Plateau[J]. Journal of Asian Earth Sciences, 2012, 53: 3-14. doi: 10.1016/j.jseaes.2011.12.018
    [6]
    Deng J, Wang Q, Li G, et al. Tethys tectonic evolution and its bearing on the distribution of important mineral deposits in the Sanjiang region, SW China[J]. Gondwana Research, 2014, 26(2): 419-437. doi: 10.1016/j.gr.2013.08.002
    [7]
    Hébert R, Bezard R, Guilmette C, et al. The Indus-Yarlung Zangbo ophiolites from Nanga Parbat to Namche Barwa syntaxes, southern Tibet: First synthesis of petrology, geochemistry, and geochronology with incidences on geodynamic reconstructions of Neo-Tethys[J]. Gondwana Research, 2012, 22(2): 377-397. doi: 10.1016/j.gr.2011.10.013
    [8]
    Dubois-Côté V, Hébert R, Dupuis C, et al. Petrological and geochemical evidence for the origin of the Yarlung Zangbo ophiolites, southern Tibet[J]. Chemical Geology, 2005, 214(3): 265-286.
    [9]
    莫宣学, 潘桂棠. 从特提斯到青藏高原形成: 构造-岩浆事件的约束[J]. 地学前缘, 2006, 13(6): 43-51. https://www.cnki.com.cn/Article/CJFDTOTAL-DXQY200606007.htm

    Mo X X, Pan G T. From the Tethys to the formation of the Qinghai-Tibet Plateau: Constrained by tectono-magmatic eevents[J]. Geoscience Frontiers, 2006, 13(6): 45-51(in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-DXQY200606007.htm
    [10]
    许志琴, 杨经绥, 李海兵, 等. 青藏高原与大陆动力学: 地体拼合、碰撞造山及高原隆升的深部驱动力[J]. 中国地质, 2006, 33(2): 221-238. https://www.cnki.com.cn/Article/CJFDTOTAL-DIZI200602001.htm

    Xu Z Q, Yang J S, Li H B, et al. The Qinghai-Tibet plateau and continental dynamics: A review on terrain tectonics, collisional orogenesis, and processes and mechanisms for the rise of the plateau[J]. Geology in China, 2006, 33(2): 221-238(in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-DIZI200602001.htm
    [11]
    Liu Q, Liu F, Li H, et al. Remnants of middle Triassic oceanic lithosphere in the western Indus-Tsangpo suture zone, southwestern Tibet[J]. Terra Nova, 2021, 33(2): 109-119. doi: 10.1111/ter.12495
    [12]
    吴福元, 刘传周, 张亮亮, 等. 雅鲁藏布蛇绿岩: 事实与臆想[J]. 岩石学报, 2014, 30(2): 293-325. https://www.cnki.com.cn/Article/CJFDTOTAL-YSXB201402001.htm

    Wu F Y, Liu C Z, Zhang L L, et al. Yarlung Zangbo ophiolites: A critical updated view[J]. Acta Petrologica Sinica, 2014, 30(2): 293-325(in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-YSXB201402001.htm
    [13]
    潘桂棠, 陈智梁, 李兴振, 等. 东特提斯地质构造形成演化[M]. 北京: 地质出版社, 1997.

    Pan G T, Chen Z L, Li X Z, et al. Geological-teological-tectonic evolution in the eastem Testem Tethys[M]. Beijing: Geological Publishing House, 1997(in Chinese).
    [14]
    李源, 杨经绥, 刘钊, 等. 西藏雅鲁藏布江缝合带西段巴尔地幔橄榄岩成因及构造意义[J]. 岩石学报, 2011, 27(11): 3239-3254. https://www.cnki.com.cn/Article/CJFDTOTAL-YSXB201111007.htm

    Li Y, Yang J S, Liu Z, et al. The origins of Baer ophiolitic peridotite and its implication in the Yarlung Zangbo suture zone, southern Tibet[J]. Acta Petrologica Sinica, 2011, 27(11): 3239-3254(in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-YSXB201111007.htm
    [15]
    张万平, 袁四化, 刘伟. 青藏高原南部雅鲁藏布江蛇绿岩带的时空分布特征及地质意义[J]. 西北地质, 2011, 44(1): 1-9. doi: 10.3969/j.issn.1009-6248.2011.01.001

    Zhang W P, Yuan S H, Liu W, et al. Distribution andresearch significance of ophiolite in Brahmaputra Suture Zone, Southern Tibet[J]. North Western Geology, 2011, 44(1): 1-9(in Chinese with English abstract). doi: 10.3969/j.issn.1009-6248.2011.01.001
    [16]
    孙东, 王道永. 雅鲁藏布江缝合带中段构造特征及成因模式新见解[J]. 地质学报, 2011, 85(1): 56-65. https://www.cnki.com.cn/Article/CJFDTOTAL-DZXE201101003.htm

    Sun D, Wang D Y. Structure features of the Middle Yarlung Zangbo Suture Zone and a new knowledge of its genetic model[J]. Acta Geologica Sinica, 2011, 85(1): 56-65(in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-DZXE201101003.htm
    [17]
    刘飞, 杨经绥, 陈松永, 等. 雅鲁藏布江缝合带西段基性岩地球化学和Sr-Nd-Pb同位素特征: 新特提斯洋内俯冲的证据[J]. 中国地质, 2013, 40(3): 742-755. doi: 10.3969/j.issn.1000-3657.2013.03.007

    Liu F, Yang J S, Chen S Y, et al. Geochemistry and Sr-Nd-Pb isotopic composition of mafic rocks in the western part of Yarlung Zangbo suture zone: Evidence for intra-oceanic supra-subduction within the Neo-Tethys[J]. Geology in China, 2013, 40(3): 742-755(in Chinese with English abstract). doi: 10.3969/j.issn.1000-3657.2013.03.007
    [18]
    李祥辉, 王成善, 李亚林, 等. 仲巴微地体之定义及构成[J]. 地质学报, 2014, 88(8): 1372-1381. https://www.cnki.com.cn/Article/CJFDTOTAL-DZXE201408002.htm

    Li X H, Wang C S, Li Y L, et al. Definition and composition of the Zhongba Microterrane in Southwest Tibet[J]. Acta Geologica Sinica, 2014, 88(8): 1372-1381(in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-DZXE201408002.htm
    [19]
    多吉, 温春齐, 郭建慈, 等. 西藏4.1Ga碎屑锆石年龄的发现[J]. 科学通报, 2007, 52(1): 19-22. https://www.cnki.com.cn/Article/CJFDTOTAL-KXTB200701002.htm

    Duo J, Wen C Q, Guo J C, et al. 4.1 Ga old detrital zircon in western Tibet of China[J]. Chinese Science Bulletin, 2007, 52(1): 19-22(in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-KXTB200701002.htm
    [20]
    孙高远, 胡修棉. 仲巴地体的板块亲缘性: 来自碎屑锆石U-Pb年代学和Hf同位素的证据[J]. 岩石学报, 2012, 28(5): 1635-1646. https://www.cnki.com.cn/Article/CJFDTOTAL-YSXB201205026.htm

    Sun G Y, Hu X M. Tectonic affinity of Zhongba terrane: Evidences from the detrital zircon geochronology and Hf isotopes[J]. Acta Petrologica Sinica, 2012, 28(5): 1635-1646(in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-YSXB201205026.htm
    [21]
    刘峰, 周峰, 刘强, 等. 藏南仲巴地体中段构造变形特征及构造演化分析[J]. 大地构造与成矿学, 2019, 43(5): 859-871. https://www.cnki.com.cn/Article/CJFDTOTAL-DGYK201905001.htm

    Liu F, Zhou F, Liu Q, et al. Structural characteristics in the middle of the Zhongba terrane, Southern Tibet and its tectonic evolution[J]. Geotectonica et Metallogenia, 2019, 43(5): 859-871(in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-DGYK201905001.htm
    [22]
    He J, Li Y, Wang C, et al. Plume-proximal mid-ocean ridge origin of Zhongba mafic rocks in the western Yarlung Zangbo Suture Zone, Southern Tibet[J]. Journal of Asian Earth Sciences, 2016, 121: 34-55.
    [23]
    He Z Y, Xu X S, Yu Y, et al. Origin of the Late Cretaceous syenite from Yandangshan, SE China, constrained by zircon U-Pb and Hf isotopes and geochemical data[J]. International Geology Review, 2009, 51(6): 556-582.
    [24]
    Jackson S E, Pearson N J, Griffin W L, et al. The application of laser ablation-inductively coupled plasma-mass spectrometry to in situ U-Pb zircon geochronology[J]. Chemical Geology, 2004, 211(1/2): 47-69.
    [25]
    Liu Y S, Gao S, Hu Z C, et al. Continental and oceanic crust recycling-induced melt-peridotite interactions in the Trans-North China Orogen: U-Pb dating, Hf isotopes and trace elements in zircons from mantle xenoliths[J]. Journal of Petrology, 2009, 51(1/2): 537-571.
    [26]
    Liu Y S, Hu Z C, Zong K Q, et al. Reappraisement and refinement of zircon U-Pb isotope and trace element analyses by LA-ICP-MS[J]. Chinese Science Bulletin, 2010, 55(15): 1535-1546.
    [27]
    Liu Y S, Hu Z C, Gao S, et al. In situ analysis of major and traceelements of anhydrous minerals by LA-ICP-MS without applying an internal standard[J]. Chemical Geology, 2008, 257(1/2): 34-43.
    [28]
    Ludwig K. User's manual for Isoplot 3.00: A geochronological toolkit for Microsoft Excel, Kenneth[R]. Berkeley: Berkeley Geochronology Centre, 2003.
    [29]
    Sun S S, McDonough W F. Chemical and isotopic systematics of oceanic basalts: Implications for mantle composition and processes[J]. Geological Society, London, Special Publications, 1989, 42(1): 313-345.
    [30]
    Shaw D M. Theorigin of the Apsley gneiss, Ontario[J]. Canadian Journal of Earth Sciences, 1972, 9(1): 18-35.
    [31]
    Nesbitt H W, Young G M. Early Proterozoic climates and plate motions inferred from major element chemistry of lutites[J]. Nature, 1982, 299: 715-717.
    [32]
    胡恭任, 刘丛强, 章邦桐, 等. 赣中变质岩带的岩石学特征及原岩恢复[J]. 江西地质, 1999, 13(3): 3-5. https://www.cnki.com.cn/Article/CJFDTOTAL-JXDZ199903000.htm

    Hu G R, Liu C Q, Zhang B T, et al. Petrological features of the central Jiangxi metamorphic belt and restoration of protolith[J]. Jiangxi Geology, 1999, 13(3): 3-5(in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-JXDZ199903000.htm
    [33]
    王仁民, 贺高品, 陈珍珍, 等. 变质岩原岩图解判别法[M]. 北京: 地质出版社, 1987.

    Wang R M, He G P, Chen Z Z, et al. Graphicmethod for protolith metamorphic rocks[M]. Beijing: Geological Publishing House, 1987(in Chinese).
    [34]
    时国, 郭福生, 谢财富, 等. 赣中相山铀矿田基底变质岩原岩恢复及其形成环境[J]. 中国地质, 2015, 42(2): 457-468. https://www.cnki.com.cn/Article/CJFDTOTAL-DIZI201502007.htm

    Shi G, Guo F S, Xie C F, et al. Protoliths reconstruction and formation conditions of basement metamorphic rocks in the Xiangshan uranium orefield, Central Jiangxi[J]. Geology in China, 2015, 42(2): 457-468(in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-DIZI201502007.htm
    [35]
    Girty G, Ridge D, Knaack C, et al. Provenance anddepositional setting of Paleozoic chert and argillite, Sierra Nevada, California[J]. Journal of Sedimentary Research, 1996, 66: 107-118.
    [36]
    Jewell P W, Stallard R F. Geochemistry andpaleoceanographic setting of Central Nevada Bedded Barites[J]. The Journal of Geology, 1991, 99(2): 151-170.
    [37]
    Murray R W, Buchholtz ten Brink M R, Jones D L, et al. Rare earth elements as indicators of different marine depositional environments in chert and shale[J]. Geology, 1990, 18(3): 268-271.
    [38]
    Bhatia M R, Crook K A W. Trace element characteristics of graywackes and tectonic setting discrimination of sedimentary basins[J]. Contributions to Mineralogy and Petrology, 1986, 92(2): 181-193.
    [39]
    张泽明, 王金丽, 沈昆, 等. 环东冈瓦纳大陆周缘的古生代造山作用: 东喜马拉雅构造结南迦巴瓦岩群的岩石学和年代学证据[J]. 岩石学报, 2008, 24(7): 1627-1637. https://www.cnki.com.cn/Article/CJFDTOTAL-YSXB200807020.htm

    Zhang Z M, Wang J L, Shen K, et al. Paleozoic circum-Gondwana orogens: Petrology and geochronology of the Namche Barwa Complex in the eastern Himalayan syntaxis, Tibet[J]. Acta Petrologica Sinica, 2008, 24(7): 1627-1637(in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-YSXB200807020.htm
    [40]
    Cawood P A, Johnson M R W, Nemchin A A. Early Palaeozoic orogenesis along the Indian margin of Gondwana: Tectonic response to Gondwana assembly[J]. Earth and Planetary Science Letters, 2007, 255(1/2): 70-84.
    [41]
    张振利, 专少鹏, 李广栋, 等. 藏南仲巴地层分区才巴弄组变质玄武质火山岩的发现及其意义[J]. 地质通报, 2007, 26(4): 410-416. https://www.cnki.com.cn/Article/CJFDTOTAL-ZQYD200704005.htm

    Zhang Z L, Zhuan S P, Li G D, et al. Discovery of metabasaltic rocks in the Caibalong Formation in the Zhongba stratigraphic area, southern Tibet, China and their significance[J]. Geological Bulletin of China, 2007, 26(4): 410-416(in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-ZQYD200704005.htm
    [42]
    林超, 张进江, 黄天立, 等. 仲巴微地体的构造亲缘性: 来自藏南马攸木地区志留系-石炭系碎屑锆石年代学的制约[J]. 地质科学, 2020, 55(2): 574-597. https://www.cnki.com.cn/Article/CJFDTOTAL-DZKX202002017.htm

    Lin C, Zhang J J, Huang T L, et al. Tectonic affinity of Zhongba microterrane: Constraint from detrital zircon geochronoIogy of the SiIurian-Carboniferous strata in the Mayum region, southern Tibet[J]. Chinese Journal of Geology, 2020, 55(2): 574-597(in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-DZKX202002017.htm
    [43]
    Zhu D C, Zhao Z D, Niu Y L, et al. Lhasa terrane in southern Tibet came from Australia[J]. Geology, 2011, 39(8): 727-730.
    [44]
    Pullen A, Kapp P, Gehrels G E, et al. Triassic continental subduction in central Tibet and Mediterranean-style closure of the Paleo-Tethys Ocean[J]. Geology, 2008, 36(5): 351-354.
    [45]
    董春艳, 李才, 万渝生, 等. 西藏羌塘龙木错-双湖缝合带南侧奥陶纪温泉石英岩碎屑锆石年龄分布模式: 构造归属及物源区制约[J]. 中国科学: 地球科学, 2011, 41(3): 299-308. https://www.cnki.com.cn/Article/CJFDTOTAL-JDXK201103003.htm

    Dong C Y, Li C, Wan Y S, et al. Detrital zircon age model of Ordovician Wenquan quartzite south of Lungmuco-Shuanghu Suture in the Qiangtang area, Tibet: Constraint on tectonic affinity and source regions[J]. Science China: Earth Science, 2011, 41(3): 299-308(in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-JDXK201103003.htm
    [46]
    McQuarrie N, Robinson D, Long S, et al. Preliminary stratigraphic and structural architecture of Bhutan: Implications for the along strike architecture of the Himalayan system[J]. Earth and Planetary Science Letters, 2008, 272(1): 105-117.
    [47]
    Myrow P, Hughes N, Goodge J, et al. Extraordinary transport and mixing of sediment across Himalayan central Gondwana during the Cambrian-Ordovician[J]. Geological Society of America Bulletin, 2010, 122: 1660-1670.
    [48]
    Myrow P M, Hughes N C, Searle M P, et al. Stratigraphic correlation of Cambrian-Ordovician deposits along the Himalaya: Implications for the age and nature of rocks in the Mount Everest region[J]. GSA Bulletin, 2009, 121(3/4): 323-332.
    [49]
    Gehrels G E, DeCelles P G, Ojha T P, et al. Geologic and U-Th-Pb geochronologic evidence for early Paleozoic tectonism in the Kathmandu thrust sheet, central Nepal Himalaya[J]. GSA Bulletin, 2006, 118(1/2): 185-198.
    [50]
    Gehrels G E, DeCelles P G, Ojha T P, et al. Geologic and U-Pb geochronologic evidence for early Paleozoic tectonism in the Dadeldhura thrustsheet, far-west Nepal Himalaya[J]. Journal of Asian Earth Sciences, 2006, 28(4): 385-408.
    [51]
    Leier A L, Kapp P, Gehrels G E, et al. Detrital zircon geochronology of Carboniferous-Cretaceous strata in the Lhasa terrane, Southern Tibet[J]. Basin Research, 2007, 19(3): 361-378.
    [52]
    侯云岭. 西藏南部仲巴微地体构造属性分析: 来自碎屑锆石U-Pb年代学的证据[D]. 北京: 中国地质大学(北京), 2015.

    Hou Y L. Tectonic property research on Zhongba microterrane, southern Tibet: Evidences from detrital zircon U-Pb geochronology[D]. Beijing: China University of Geosciences(Beijing), 2015(in Chinese with English abstract).
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article Views(322) PDF Downloads(60) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return