Volume 42 Issue 1
Jan.  2023
Turn off MathJax
Article Contents
Wang Qilin, Zhang Jinyang, Yan Detian, Min Hong, Liu Shu, Li Chen. Genesis type of ore deposits indicated by trace elements of chalcopyrite[J]. Bulletin of Geological Science and Technology, 2023, 42(1): 126-143. doi: 10.19509/j.cnki.dzkq.2021.0090
Citation: Wang Qilin, Zhang Jinyang, Yan Detian, Min Hong, Liu Shu, Li Chen. Genesis type of ore deposits indicated by trace elements of chalcopyrite[J]. Bulletin of Geological Science and Technology, 2023, 42(1): 126-143. doi: 10.19509/j.cnki.dzkq.2021.0090

Genesis type of ore deposits indicated by trace elements of chalcopyrite

doi: 10.19509/j.cnki.dzkq.2021.0090
  • Received Date: 07 Jul 2021
  • Trace elements of metallic minerals are important to constrain the formation processes and genetic types of ore deposits. Trace elements have been mainly focused on pyrite, magnetite, and sphalerite but have rarely been applied to chalcopyrite. To reveal the relationships between chalcopyrite trace elements and ore deposit types, ore petrography and LA-ICP-MS trace element of chalcopyrite in collected copper concentrate samples from porphyry copper deposits (PCD), magmatic copper-nickel sulfide deposits (MSD), sedimentary rock-hosted stratiform copperdeposits (SSC), iron oxide copper-gold deposits (IOCG), sedimentary exhalative deposits (SEDEX) and volcanogenic massive sulfide deposits (VMS) have been carried out. In chalcopyrite, Mn, Co, Ni, Se, Ag, Sn, Pb, and Bi contents are more than 1 000×10-6, and Ga, Ge, Mo, Cd, In, Sb, Te, Au and Tl contents are up to 100×10-6, which together indicate chalcopyrite is an important carrier for many trace elements. Antimony-Tl, In-Sn, Pb-Bi, and Mn-Ni in the chalcopyrite are positively correlated.Meanwhile, in chalcopyrite, Sb, Tl, In, and Sn mainly occur in the form of solid solution, Pb and Bi in the form of galena inclusions, and Mn, Co, As, Te, Ag, and Ni are both developed. Trace elements of chalcopyrite from PCD and VMS are variable. The concentrations of Ni and In in chalcopyrite from MSD are high and low, and Ge and Sn from SSC are higher and lower than other types, respectively. Moreover, the concentration of Se in chalcopyrite is higher from MSD and VMS, but is lower from SEDEX and SSC. Different concentrations of Ni, In, and Sn in the chalcopyrite are mainly related to different magmatism, and Se is principally controlled by temperature. The high concentrations of Ge in chalcopyrite from SSC may be related to ore-forming temperature and host rocks.Therefore, based on the above trace elements characteristics, Ni-Co and Ni-In diagrams can distinguish MSD from other deposit types, the diagram of Ni-Se can differentiate SEDEX, SSC from VMS, and the diagram of Ge-Sn is used to isolate SSC from SEDEX. In addition, the diagram of Co/Ni-Ag/Bi can differentiate between MSD and PCD, while Zn-Sn/In can discriminate IOCG from others to some extent.These first systematically proposed diagrams will provide a new reference for distinguishing the genetic types of deposits.

     

  • loading
  • [1]
    赵振华, 严爽. 矿物: 成矿与找矿[J]. 岩石学报, 2019, 35(1): 31-68. https://www.cnki.com.cn/Article/CJFDTOTAL-YSXB201901004.htm

    Zhao Z H, Yan S. Minerals and relevant metallogeny and exploration[J]. Acta Petrologica Sinica, 2019, 35(1): 31-68(in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-YSXB201901004.htm
    [2]
    Bralia A G, Sabatini G, Troja F. A revaluation of the Co/Ni ratio in pyrite as geochemical tool in ore genesis problems[J]. Mineralium Deposita, 1979, 14(3): 353-374.
    [3]
    Bajwah Z U, Seccombe P K, Offler R. Trace element distribution, Co: Ni ratios and genesis of the Big Cadia iron-copper deposit, New South Wales, Australia[J]. Mineralium Deposita, 1987, 22(4): 292-300.
    [4]
    Brill B A. Trace-element contents and partitioning of elements in ore minerals from the CSA Cu-Pb-Zn deposit, Australia[J]. Canadian Mineralogist, 1989, 27: 263-274.
    [5]
    宋学信, 张景凯. 中国各种成因黄铁矿的微量元素特征[C]//佚名. 中国地质科学院矿床地质研究所文集(18). 北京: 地质出版社, 1986.

    Song X X, Zhang J K. Minor elements in pyrites of various genetic types from China[C]//Bulletin of the Institute of Mineral Deposits Chinese Academy of Geological Sciences. Beijing: Geological Publishing House, 1986(in Chinese).
    [6]
    冷成彪. 滇西北红山铜多金属矿床的成因类型: 黄铁矿和磁黄铁矿LA-ICPMS微量元素制约[J]. 地学前缘, 2017, 24(6): 162-175. https://www.cnki.com.cn/Article/CJFDTOTAL-DXQY201706016.htm

    Leng C B. Genesis of Hongshan Cu polymetallic large deposit in the Zhongdian area, NW Yunnan: Constraints from LA-ICPMS trace elements of pyrite and pyrrhotite[J]. Earth Science Frontiers, 2017, 24(6): 162-175(in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-DXQY201706016.htm
    [7]
    严育通, 李胜荣, 贾宝剑, 等. 中国不同成因类型金矿床的黄铁矿成分标型特征及统计分析[J]. 地学前缘, 2012, 19(4): 214-226. https://www.cnki.com.cn/Article/CJFDTOTAL-DXQY201204024.htm

    Yan Y T, Li S R, Jia B J, et al. Composition typomorphic characteristics and statistic analysis of pyrite in gold deposits of different genetic types[J]. Earth Science Frontiers, 2012, 19(4): 214-226(in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-DXQY201204024.htm
    [8]
    Gregory D D, Cracknell M J, Large R R, et al. Distinguishing ore deposit type and barren sedimentary pyrite using laser ablation-inductively coupled plasma-mass spectrometry trace element data and statistical analysis of large data sets[J]. Economic Geology, 2019, 114(4): 771-786. doi: 10.5382/econgeo.4654
    [9]
    Huston D L, Sie S H, Suter G F, et al. Trace elements in sulfide minerals from eastern Australian volcanic-hosted massive sulfide deposits, Part Ⅱ. Selenium levels in pyrite: Comparison with δ34S values and implications for the source of sulfur in volcanogenic hydrothermal systems[J]. Economic Geology, 1995, 90(5): 1167-1196. doi: 10.2113/gsecongeo.90.5.1167
    [10]
    Fitzpatrick A J. The measurement of the Se/S ratios in sulphide minerals and their application to ore deposit studies[D]. Ontario: Queen's University, 2008.
    [11]
    Dupuis C, Beaudoin G. Discriminant diagrams for iron oxide trace element fingerprinting of mineral deposit types[J]. Mineralium Deposita, 2011, 46(4): 319-335. doi: 10.1007/s00126-011-0334-y
    [12]
    Nadoll P, Angerer T, Mauk J L, et al. The chemistry of hydrothermal magnetite: A review[J]. Ore Geology Reviews, 2014, 61: 1-32. doi: 10.1016/j.oregeorev.2013.12.013
    [13]
    Wen G, Li J W, Hofstra A H, et al. Hydrothermal reequilibration of igneous magnetite in altered granitic plutons and its implications for magnetite classification schemes: Insights from the Handan-Xingtai iron district, North China Craton[J]. Geochimica et Cosmochimica Acta, 2017, 213: 255-270. doi: 10.1016/j.gca.2017.06.043
    [14]
    Makvandi S, Ghasemzadeh-Barvarz M, Beaudoin G, et al. Partial least squares-discriminant analysis of trace element compositions of magnetite from various VMS deposit subtypes: Application to mineral exploration[J]. Ore Geology Reviews, 2016, 78: 388-408. doi: 10.1016/j.oregeorev.2016.04.014
    [15]
    Huang X W, Sappin A A, Boutroy É, et al. Trace element composition of igneous and hydrothermal magnetite from porphyry deposits: Relationship to deposit subtypes and magmatic affinity[J]. Economic Geology, 2019, 114(5): 917-952. doi: 10.5382/econgeo.4648
    [16]
    Huang X W, Boutroy É, Makvandi S, et al. Trace element composition of iron oxides from IOCG and IOA deposits: Relationship to hydrothermal alteration and deposit subtypes[J]. Mineralium Deposita, 2019, 54(4): 525-552. doi: 10.1007/s00126-018-0825-1
    [17]
    Zhang Q. Trace elements in galena and sphalerite and their geochemical significance in distinguishing the genetic types of Pb-Zn ore deposits[J]. Chinese Journal of Geochemistry, 1987, 6(2): 177-190. doi: 10.1007/BF02872218
    [18]
    Ye L, Cook N J, Ciobanu C L, et al. Trace and minor elements in sphalerite from base metal deposits in South China: A LA-ICPMS study[J]. Ore Geology Reviews, 2011, 39(4): 188-217. doi: 10.1016/j.oregeorev.2011.03.001
    [19]
    Frenzel M, Hirsch T, Gutzmer J. Gallium, germanium, indium, and other trace and minor elements in sphalerite as a function of deposit type: A meta-analysis[J]. Ore Geology Reviews, 2016, 76: 52-78. doi: 10.1016/j.oregeorev.2015.12.017
    [20]
    George L L, Cook N J, Crowe B B P, et al. Trace elements in hydrothermal chalcopyrite[J]. Mineralogical Magazine, 2018, 82(1): 59-88. doi: 10.1180/minmag.2017.081.021
    [21]
    陈殿芬. 我国一些铜镍硫化物矿床主要金属矿物的特征[J]. 岩石矿物学杂志, 1995, 14(4): 345-354. https://www.cnki.com.cn/Article/CJFDTOTAL-YSKW504.005.htm

    Chen D F. Characteristics of main metallic minerals in some copper-nickel sulfide deposits of China[J]. Acta Petrologica et Mineralogica, 1995, 14(4): 345-354(in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-YSKW504.005.htm
    [22]
    Duran C J, Dubé-Loubert H, Pagé P, et al. Applications of trace element chemistry of pyrite and chalcopyrite in glacial sediments to mineral exploration targeting: Example from the Churchill Province, northern Quebec, Canada[J]. Journal of Geochemical Exploration, 2019, 196: 105-130. doi: 10.1016/j.gexplo.2018.10.006
    [23]
    Sylvester P J. Matrix effects in Laser Ablation-ICP-MS[M]//Anon. Laser ablation ICP-MS in the earth sciences: Current practices and outstanding issues. Jackson S E: Mineralogical Association of Canada, 2008.
    [24]
    李艳军, 魏俊浩. 铅锌矿床中微量元素富集及关键测试技术研究新进展[J]. 地质科技情报, 2014, 33(1): 191-198. https://www.cnki.com.cn/Article/CJFDTOTAL-DZKQ201401030.htm

    Li Y J, Wei J H. A review of trace elements enrichment in sulfides from Pb-Zn deposits and associated critical testing technology[J]. Geological Science and Technology Information, 2014, 33(1): 191-198(in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-DZKQ201401030.htm
    [25]
    Chew D, Drost K, Marsh J H, et al. LA-ICP-MS imaging in the geosciences and its applications to geochronology[J]. Chemical Geology, 2021, 559: 119917. doi: 10.1016/j.chemgeo.2020.119917
    [26]
    栾燕, 孙晓辉, 刘民武, 等. 磁铁矿LA-ICP-MS原位微量元素分析方法研究[J]. 地质科技通报, 2021, 40(2): 167-175. doi: 10.19509/j.cnki.dzkq.2021.0215

    Luan Y, Sun X H, Liu M W, et al. Analysis method for in-situ trace element determination of magnetite by LA-ICP-MS[J]. Bulletin of Geological Science and Technology, 2021, 40(2): 167-175(in Chinese with English abstract). doi: 10.19509/j.cnki.dzkq.2021.0215
    [27]
    Baker T. Alteration, mineralization, and fluid evolution at the Eloise Cu-Au deposit, Cloncurry District, Northwest Queensland, Australia[J]. Economic Geology, 1998, 93(8): 1213-1236. doi: 10.2113/gsecongeo.93.8.1213
    [28]
    Pollard P J, Taylor R G, Peters L, et al. 40Ar-39Ar dating of Archean iron oxide Cu-Au and Paleoproterozoic granite-related Cu-Au deposits in the Carajás Mineral Province, Brazil: Implications for genetic models[J]. Mineralium Deposita, 2019, 54(3): 329-346. doi: 10.1007/s00126-018-0809-1
    [29]
    De Haller A, Fontbote L. The raul-condestable iron oxide copper-gold deposit, central coast of Peru: Ore and related hydrothermal alteration, sulfur isotopes, and thermodynamic constraints[J]. Economic Geology, 2009, 104(3): 365-384. doi: 10.2113/gsecongeo.104.3.365
    [30]
    Walker A T, Evans K A, Kirkland C L, et al. Tracking mineralisation with in situ multiple sulphur isotopes: A case study from the Fraser Zone, western Australia[J]. Precambrian Research, 2019, 332: 105379. doi: 10.1016/j.precamres.2019.105379
    [31]
    Zhang J Y, Lei H L, Ma C Q, et al. Geochemical and thermodynamical modeling of magmatic sources and processes for the Xiarihamu sulfide deposit in the eastern Kunlun Orogen, western China[J]. Journal of Geochemical Exploration, 2018, 190: 345-356. doi: 10.1016/j.gexplo.2018.04.005
    [32]
    Warnaars F W, Holmgren D C, Barassi F S. Porphyry copper and tourmaline breccias at Los Bronces-Rio Blanco, Chile[J]. Economic Geology, 1985, 80(6): 1544-1565. doi: 10.2113/gsecongeo.80.6.1544
    [33]
    Tapia J, Townley B, Córdova L, et al. Hydrothermal alteration and its effects on the magnetic properties of Los Pelambres, a large multistage porphyry copper deposit[J]. Journal of Applied Geophysics, 2016, 132: 125-136. doi: 10.1016/j.jappgeo.2016.07.005
    [34]
    Pollard P J, Taylor R G, Peters L. Ages of intrusion, alteration, and mineralization at the Grasberg Cu-Au deposit, Papua, Indonesia[J]. Economic Geology, 2005, 100(5): 1005-1020. doi: 10.2113/gsecongeo.100.5.1005
    [35]
    Del Rio-Salas R, Ochoa-Landín L, Valencia-Moreno M, et al. New U-Pb and Re-Os geochronology of Laramide porphyry copper mineralization along the Cananea lineament, northeastern Sonora, Mexico: Contribution to the understanding of the Cananea copper district[J]. Ore Geology Reviews, 2017, 81: 1125-1136. doi: 10.1016/j.oregeorev.2015.11.029
    [36]
    Love D A, Clark A H, Glover J K. The lithologic, stratigraphic, and structural setting of the Giant Antamina copper-zinc skarn deposit, Ancash, Peru[J]. Economic Geology, 2004, 99(5): 887-916. doi: 10.2113/gsecongeo.99.5.887
    [37]
    Reed A, Cannell J. Implicit modelling of the Las Bambas deposits, Peru[J]. ASEG Extended Abstracts, 2018, 2018(1): 1-6.
    [38]
    彭建, 戴芳容, 张敏, 等. 秘鲁特罗莫克铜矿SABC流程考查及优化措施研究[J]. 有色金属: 选矿部分, 2018(6): 23-28. https://www.cnki.com.cn/Article/CJFDTOTAL-YSXK201806005.htm

    Peng J, Dai F R, Zhang M, et al. Research on the SABC process investigation and optimization measures in Peru Toromocho copper mine[J]. Nonferrous Metals: Mineral Processing Section, 2018(6): 23-28(in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-YSXK201806005.htm
    [39]
    Quang C X, Clark A H, Lee J K W. 40Ar-39Ar ages of hypogene and supergene mineralization in the Cerro Verde-Santa Rosa porphyry Cu-Mo cluster, Arequipa, Peru[J]. Economic Geology, 2003, 98(8): 1683-1696. doi: 10.2113/gsecongeo.98.8.1683
    [40]
    王宏, 王疆丽, 陈慕天, 等. 老挝川圹省Phu Kham铜金矿床地质特征及找矿方向[J]. 地质找矿论丛, 2014, 29(1): 66-71. https://www.cnki.com.cn/Article/CJFDTOTAL-DZZK201401008.htm

    Wang H, Wang J L, Chen M T, et al. Geological characteristics and prospecting index of the PhuKham Cu-Au deposit in Xiangkhouang Province, Laos[J]. Contributions to Geology and Mineral Resources Research, 2014, 29(1): 66-71(in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-DZZK201401008.htm
    [41]
    Haynes F M, Titley S R. The evolution of fracture-related permeability within the Ruby Star granodiorite, Sierrita porphyry copper deposit, Pima County, Arizona[J]. Economic Geology, 1980, 75(5): 673-683. doi: 10.2113/gsecongeo.75.5.673
    [42]
    Pollock M V, Spry P G, Tott K A, et al. The origin of the sediment-hosted Kanmantoo Cu-Au deposit, South Australia: Mineralogical considerations[J]. Ore Geology Reviews, 2018, 95: 94-117. doi: 10.1016/j.oregeorev.2018.02.017
    [43]
    殷学清, 林海涛, 苏治坤, 等. 东川式铜矿的成矿作用及后期叠加改造: 来自硫化物原位硫同位素的制约[J]. 矿床地质, 2021, 40(1): 34-52. https://www.cnki.com.cn/Article/CJFDTOTAL-KCDZ202101003.htm

    Yin X Q, Lin H T, Su Z K, et al. Mineralization and subsequent overprint history of Dongchuan-type copper deposits: Constraints from in situ sulfur isotope of sulfides[J]. Mineral Deposits, 2021, 40: 34-52(in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-KCDZ202101003.htm
    [44]
    Zhao X F, Zhou M F, Hitzman M W, et al. Late paleoproterozoic to Early Mesoproterozoic Tangdan sedimentary rock-hosted strata-bound copper deposit, Yunnan Province, southwest China[J]. Economic Geology, 2012, 107(2): 357-375. doi: 10.2113/econgeo.107.2.357
    [45]
    Cailteux J L H, Kampunzu A B, Lerouge C, et al. Genesis of sediment-hosted stratiform copper-cobalt deposits, central African copperbelt[J]. Journal of African Earth Sciences, 2005, 42(1/5): 134-158.
    [46]
    Huston D L, Champion D C, Mernagh T P, et al. Metallogenesis and geodynamics of the Lachlan Orogen: New (and old) insights from spatial and temporal variations in lead isotopes[J]. Ore Geology Reviews, 2016, 76: 257-267. doi: 10.1016/j.oregeorev.2015.07.005
    [47]
    Seccombe P K, Jiang Z, Downes P M. Sulfur isotope and fluid inclusion geochemistry of metamorphic Cu-Au vein deposits, central Cobar area, NSW, Australia[J]. Australian Journal of Earth Sciences, 2017, 64(4): 537-556. doi: 10.1080/08120099.2017.1297330
    [48]
    向鹏, 王建雄, 姚华舟, 等. 厄立特里亚比萨(Bisha)VMS型多金属矿床的研究进展及认识[J]. 地质科技情报, 2013, 32(5): 118-125. https://www.cnki.com.cn/Article/CJFDTOTAL-DZKQ201305019.htm

    Xiang P, Wang J X, Yao H Z, et al. Geological characteristics, tectonic environment and the type of Bisha volcanic-associated massive sulfide polymetallic deposit, western Eritrea[J]. Geological Science and Tecnology Information, 2013, 32(5): 118-125(in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-DZKQ201305019.htm
    [49]
    Sánchez-España J, Velasco F, Boyce A J, et al. Source and evolution of ore-forming hydrothermal fluids in the northern Iberian pyrite belt massive sulphide deposits (SW Spain): Evidence from fluid inclusions and stable isotopes[J]. Mineralium Deposita, 2003, 38(5): 519-537. doi: 10.1007/s00126-002-0326-z
    [50]
    Liu Y, Hu Z, Gao S, et al. In situ analysis of major and trace elements of anhydrous minerals by LA-ICP-MS without applying an internal standard[J]. Chemical Geology, 2008, 257(1/2): 34-43.
    [51]
    孙颖超. 赣南典型钨矿床、铅锌矿床中黄铜矿的矿物学研究[D]. 北京: 中国地质大学(北京), 2017.

    Sun Y C. Mineralogy of chalcopyrite from the typical tungsten and lead-zinc deposits in southern Jiangxi[D]. Beijing: China University of Geosciences (Beijing), 2017 (in Chinese with English abstract).
    [52]
    Song G X, Cook N J, Wang L, et al. Gold behavior in intermediate sulfidation epithermal systems: A case study from the Zhengguang gold deposit, Heilongjiang Province, NE-China[J]. Ore Geology Reviews, 2019, 106: 446-462. doi: 10.1016/j.oregeorev.2019.02.001
    [53]
    Del Real I, Thompson J F H, Simon A C, et al. Geochemical and isotopic signature of pyrite as a proxy for fluid source and evolution in the Candelaria-Punta Del Cobre iron oxide copper-gold district, Chile[J]. Economic Geology, 2020, 115(7): 1493-1518. doi: 10.5382/econgeo.4765
    [54]
    李萍. 云南武定迤纳厂矿床主要矿物地球化学特征及矿床成因探讨[D]. 成都: 成都理工大学, 2015.

    Li P. Geochemical characteristics of essential minerals and genesis of Yinachang deposit, Wuding, Yunnan[D]. Chengdu: Chengdu University of Technology, 2015 (in Chinese with English abstract).
    [55]
    Li R C, Chen H Y, Xia X P, et al. Ore fluid evolution in the giant Marcona Fe-(Cu) deposit, Perú: Evidence from in-situ sulfur isotope and trace element geochemistry of sulfides[J]. Ore Geology Reviews, 2017, 86: 624-638. doi: 10.1016/j.oregeorev.2017.03.025
    [56]
    Li R C, Chen H Y, Xia X P, et al. Using integrated in-situ sulfide trace element geochemistry and sulfur isotopes to trace ore-forming fluids: Example from the Mina Justa IOCG deposit (southern Perú)[J]. Ore Geology Reviews, 2018, 101: 165-179. doi: 10.1016/j.oregeorev.2018.06.010
    [57]
    苏治坤. 康滇地区大红山IOCG矿床成矿作用: 矿物微区地球化学及年代学的成因启示[D]. 武汉: 中国地质大学(武汉), 2019.

    Su Z K. Metallogenesis of the Dahongshan Fe-Cu-(Au) deposit in the Kangdian region: Constraints from geochemical and geochronological microanalyses[D]. Wuhan: China University of Geosciences(Wuhan), 2019(in Chinese with English abstract).
    [58]
    Mansur E T, Barnes S, Duran C J. An overview of chalcophile element contents of pyrrhotite, pentlandite, chalcopyrite, and pyrite from magmatic Ni-Cu-PGE sulfide deposits[J]. Mineralium Deposita, 2021, 56(1): 179-204. doi: 10.1007/s00126-020-01014-3
    [59]
    陶兰初. 维拉斯托多金属矿床硫化物LA-ICP-MS微量元素特征及其意义[D]. 北京: 中国地质大学(北京), 2017.

    Tao L C. In situ LA-ICP-MS trace element analysis of sulfides from Weilasituo polymetallic deposit and its significance[D]. Beijing: China University of Geosciences (Beijing), 2017(in Chinese with English abstract).
    [60]
    Sun K K, Chen B, Deng J, et al. Source of copper in the giant Shimensi W-Cu-Mo polymetallic deposit, South China: Constraints from chalcopyrite geochemistry and oxygen fugacity of ore-related granites[J]. Ore Geology Reviews, 2018, 101: 919-935. doi: 10.1016/j.oregeorev.2018.08.029
    [61]
    吴胜华, 孙冬阳, 李军. 柿竹园和香炉山W多金属矿床中硫化物微量元素特征: 来自原位LA-ICP-MS分析[J]. 岩石学报. 2020, 36(1): 245-256. https://www.cnki.com.cn/Article/CJFDTOTAL-YSXB202001020.htm

    Wu S H, Sun D Y, Li J. Comparison of trace elements in sulfides from the Shizhuyuan and Xianglushan W polymetallic deposits: Constrained by LA-ICP-MS analysis[J]. Acta Petrologica Sinica, 2020, 36(1): 245-256(in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-YSXB202001020.htm
    [62]
    张永超. 西藏查个勒铅锌钼铜矿床特征及成因: 来自流体包裹体、矿物学、年代学和地球化学证据[D]. 武汉: 中国地质大学(武汉), 2019.

    Zhang Y C. Fluid inclusion, mineralogical, geochronological, and geochemical constrains on the characteristics and genesis of the Chagele Pb-Zn-Mo-Cu deposit in Tibet, China[D]. Wuhan: China University of Geosciences(Wuhan), 2019 (in Chinese with English abstract).
    [63]
    Liu R, Chen G, Yang J. Compositions of Cu-(Fe)-sulfides in the 109 reduced granite-related Cu deposit, Xinjiang, Northwest China: Implications to the characteristics of ore-forming fluids[J]. Geofluids, 2020, 2020: 1-11.
    [64]
    Xie J C, Tang D W, Qian L, et al. Geochemistry of sulfide minerals from skarn Cu (Au) deposits in the Fenghuangshan ore field, Tongling, eastern China: Insights into ore-forming process[J]. Ore Geology Reviews, 2020, 122: 103537. doi: 10.1016/j.oregeorev.2020.103537
    [65]
    于赫楠. VHMS型矿床矿物地球化学特征及成因意义[D]. 长春: 吉林大学, 2013.

    Yu H N. Mineral geochemical characteristics and genesis of VHMS-type deposits[D]. Changchun: Jilin University, 2013 (in Chinese with English abstract).
    [66]
    张柏松. 西南印度洋中脊龙旂、断桥热液区成矿作用研究[D]. 北京: 中国地质大学(北京), 2019.

    Zhang B S. Study of mineralization at the Longqi and Duanqiao hydrothermal fields, Southwest Indian Ridge[D]. Beijing: China University of Geosciences (Beijing), 2019(in Chinese with English abstract).
    [67]
    Wang Y J, Han X Q, Petersen S, et al. Mineralogy and trace element geochemistry of sulfide minerals from the Wocan hydrothermal field on the slow-spreading Carlsberg Ridge, Indian Ocean[J]. Ore Geology Reviews, 2017, 84: 1-19. doi: 10.1016/j.oregeorev.2016.12.020
    [68]
    Wang Y J, Han X Q, Petersen S, et al. Trace metal distribution in sulfide minerals from ultramafic-hosted hydrothermal systems: Examples from the Kairei Vent Field, Central Indian Ridge[J]. Minerals, 2018, 8(11): 526. doi: 10.3390/min8110526
    [69]
    Revan M K, Genç Y, Maslennikov V V, et al. Mineralogy and trace-element geochemistry of sulfide minerals in hydrothermal chimneys from the Upper-Cretaceous VMS deposits of the eastern Pontide orogenic belt (NE Turkey)[J]. Ore Geology Reviews, 2014, 63: 129-149. doi: 10.1016/j.oregeorev.2014.05.006
    [70]
    Maslennikov V V, Maslennikova S P, Large R R, et al. Chimneys in Paleozoic massive sulfide mounds of the Urals VMS deposits: Mineral and trace element comparison with modern black, grey, white and clear smokers[J]. Ore Geology Reviews, 2017, 85: 64-106.
    [71]
    董凯. 甘肃白银厂铜矿成岩-成矿环境及其找矿意义[D]. 武汉: 中国地质大学(武汉), 2018.

    Dong K. Petrogenic, metallogenetic environment and its exploration significance in Baiyinchang copper deposit, Gansu Province[D]. Wuhan: China University of Geosciences(Wuhan), 2018(in Chinese with English abstract).
    [72]
    Leach D, Sangster D, Kelley K, et al. Sediment-hosted lead-zinc deposits: A global perspective[C]//Hedenquist J W, Thompson J F H, Goldfarb R J, et al. Economic Geology 100th Anniversary Volume 1905-2005. Littleton: Society of Economic Geologists, 2005, 100: 561-607.
    [73]
    Groves D I, Bierlein F P, Meinert L D, et al. Iron oxide copper-gold (IOCG) deposits through earth history: Implications for origin, lithospheric setting, and distinction from other epigenetic iron oxide deposits[J]. Economic Geology, 2010, 105(3): 641-654.
    [74]
    Hitzman M, Kirkham R, Broughton D, et al. The sediment-hosted stratiform copper ore system[C]//Hedenquist J W, Thompson J F H, Goldfarb R J, et al. Economic Geology 100th Anniversary Volume 1905-2005, Littleton: Society of Economic Geologists, 2005.
    [75]
    Barnes S J, Staude S, Le Vaillant M, et al. Sulfide-silicate textures in magmatic Ni-Cu-PGE sulfide ore deposits: Massive, semi-massive and sulfide-matrix breccia ores[J]. Ore Geology Reviews, 2018, 101: 629-651.
    [76]
    Barnes S J, Mungall J E, Le Vaillant M, et al. Sulfide-silicate textures in magmatic Ni-Cu-PGE sulfide ore deposits: Disseminated and net-textured ores[J]. American Mineralogist, 2017, 102(3): 473-506.
    [77]
    Cook N J, Ciobanu C L, Pring A, et al. Trace and minor elements in sphalerite: A LA-ICPMS study[J]. Geochimica et Cosmochimica Acta, 2009, 73(16): 4761-4791.
    [78]
    George L, Cook N J, Ciobanu C L, et al. Trace and minor elements in galena: A reconnaissance LA-ICP-MS study[J]. American Mineralogist, 2015, 100(2/3): 548-569.
    [79]
    George L L, Cook N J, Ciobanu C L. Partitioning of trace elements in co-crystallized sphalerite-galena-chalcopyrite hydrothermal ores[J]. Ore Geology Reviews, 2016, 77: 97-116.
    [80]
    Maslennikov V V, Maslennikova S P, Large R R, et al. Study of trace element zonation in vent chimneys from the Silurian Yaman-Kasy volcanic-hosted massive sulfide deposit (southern Urals, Russia) using laser ablation-inductively coupled plasma mass spectrometry (LA-ICPMS)[J]. Economic Geology, 2009, 104(8): 1111-1141.
    [81]
    徐净, 李晓峰. 铟矿床时空分布、成矿背景及其成矿过程[J]. 岩石学报, 2018, 34(12): 3611-3626. https://www.cnki.com.cn/Article/CJFDTOTAL-YSXB201812011.htm

    Xu J, Li X F. Spatial and temporal distributions, metallogenic backgrounds and processes of indium deposits[J]. Acta Petrologica Sinica, 2018, 34(12): 3611-3626(in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-YSXB201812011.htm
    [82]
    李晓峰, 朱艺婷, 徐净. 关键矿产资源铟研究进展[J]. 科学通报, 2020, 65(33): 3678-3687. https://www.cnki.com.cn/Article/CJFDTOTAL-KXTB202033005.htm

    Li X F, Zhu Y T, Xu J. Indium as a critical mineral: A research progress report[J]. Chinese Science Bulletin, 2020, 65(33): 3678-3687(in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-KXTB202033005.htm
    [83]
    叶霖, 韦晨, 胡宇思, 等. 锗的地球化学及资源储备展望[J]. 矿床地质, 2019, 38(4): 711-728. https://www.cnki.com.cn/Article/CJFDTOTAL-KCDZ201904003.htm

    Ye L, Chen W, Hu Y S, et al. Geochemistry of germanium and its resources reserves[J]. Mineral Deposits, 2019, 38(4): 711-728(in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-KCDZ201904003.htm
    [84]
    Wohlgemuth-Ueberwasser C C, Viljoen F, Petersen S, et al. Distribution and solubility limits of trace elements in hydrothermal black smoker sulfides: An in-situ LA-ICP-MS study[J]. Geochimica et Cosmochimica Acta, 2015, 159: 16-41.
    [85]
    唐大为. 铜陵凤凰山矿田矽卡岩铜多金属矿床黄铁矿原位地球化学研究[D]. 合肥: 合肥工业大学, 2020.

    Tang D W. In situ geochemical study of pyrite from skarn copper polymetallic deposit in Fenghuangshan ore field, Tongling[D]. Hefei: Hefei University of Technology, 2020(in Chinese with English abstract).
    [86]
    Cook N J, Ciobanu C L, Brugger J, et al. Determination of the oxidation state of Cu in substituted Cu-In-Fe-bearing sphalerite via μ-XANES spectroscopy[J]. American Mineralogist, 2012, 97(2/3): 476-479.
    [87]
    Reich M, Kesler S E, Utsunomiya S, et al. Solubility of gold in arsenian pyrite[J]. Geochimica et Cosmochimica Acta, 2005, 69(11): 2781-2796.
    [88]
    Wu Y, Fougerouse D, Evans K, et al. Gold, arsenic, and copper zoning in pyrite: A record of fluid chemistry and growth kinetics[J]. Geology, 2019, 47(7): 641-644.
    [89]
    Frenzel M. The distribution of gallium, germanium and indium in conventional and non-conventional resources: Implications for global availability[D]. Freiberg: Technische Universität Bergakademie Freiberg, 2016.
    [90]
    Belissont R, Boiron M, Luais B, et al. LA-ICP-MS analyses of minor and trace elements and bulk Ge isotopes in zoned Ge-rich sphalerites from the Noailhac-Saint-Salvy deposit (France): Insights into incorporation mechanisms and ore deposition processes[J]. Geochimica et Cosmochimica Acta, 2014, 126: 518-540.
    [91]
    Butler I B, Nesbitt R W. Trace element distributions in the chalcopyrite wall of a black smoker chimney: Insights from laser ablation inductively coupled plasma mass spectrometry (LA-ICP-MS)[J]. Earth and Planetary Science Letters, 1999, 167(3): 335-345.
    [92]
    Reich M, Palacios C, Barra F, et al. "Invisible" silver in chalcopyrite and bornite from the Mantos Blancos Cu deposit, northern Chile[J]. European Journal of Mineralogy, 2013, 25(3): 453-460.
    [93]
    Machault J, Barbanson L, Augé T, et al. Mineralogical and microtextural parameters in metals ores traceability studies[J]. Ore Geology Reviews, 2014, 63: 307-327.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article Views(678) PDF Downloads(125) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return