Citation: | Ma Yao, Zhao Jiangnan. Advances in the application of machine learning methods in mineral prospectivity mapping[J]. Bulletin of Geological Science and Technology, 2021, 40(1): 132-141. doi: 10.19509/j.cnki.dzkq.2021.0108 |
[1] |
赵鹏大."三联式"资源定量预测与评价:数字找矿理论与实践探讨[J].地球科学:中国地质大学学报, 2002, 27(5):482-489. doi: 10.3321/j.issn:1000-2383.2002.05.002
|
[2] |
赵鹏大, 陈永清, 刘吉平, 等.地质异常成矿预测理论与实践[M].武汉:中国地质大学出版社, 1999.
|
[3] |
赵鹏大.大数据时代数字找矿与定量评价[J].地质通报, 2015, 34(7):5-9. https://www.cnki.com.cn/Article/CJFDTOTAL-ZQYD201507001.htm
|
[4] |
成秋明.非线性成矿预测理论:多重分形奇异性-广义自相似性-分形谱系模型与方法[J].地球科学:中国地质大学学报, 2006, 31(3):337-348. doi: 10.3321/j.issn:1000-2383.2006.03.009
|
[5] |
赵鹏大, 夏庆霖.中国学者在数学地质学科发展中的成就与贡献[J].地球科学:中国地质大学学报, 2009, 34(2):225-231. doi: 10.3321/j.issn:1000-2383.2009.02.001
|
[6] |
赵鹏大.矿产资源定量预测及评价模型研究的新进展[J].地质科技情报, 1987, 6(1):1-6. https://www.cnki.com.cn/Article/CJFDTOTAL-DZKQ198701000.htm
|
[7] |
曹新志, 张旺生, 孙华山.我国深部找矿研究进展综述[J].地质科技情报, 2009, 28(2):104-109. doi: 10.3969/j.issn.1000-7849.2009.02.019
|
[8] |
Porwal A, Carranza E J M.Introduction to the special issue:GIS-based mineral potential modelling and geological data analyses for mineral exploration[J].Ore Geology Reviews, 2015, 71:477-483. doi: 10.1016/j.oregeorev.2015.04.017
|
[9] |
赵鹏大.成矿定量预测与深部找矿[J].地学前缘, 2007, 14(5):3-12. https://www.cnki.com.cn/Article/CJFDTOTAL-DXQY200705002.htm
|
[10] |
Cheng Q, Agterberg F P, Ballantyne S B.The separation of geochemical anomalies from background by fractal methods[J].Journal of Geochemical Exploration, 1994, 51(2):109-130. doi: 10.1016/0375-6742(94)90013-2
|
[11] |
Cheng Q.The perimeter-area fractal model and its application to geology[J].Mathematical Geology, 1995, 27(1):69-82. doi: 10.1007/BF02083568
|
[12] |
Cheng Q, Xu Y, Grunsky E.Integrated spatial and spectrum method for geochemical anomaly separation[J].Natural Resources Research, 2000, 9(1):43-52. doi: 10.1023/A:1010109829861
|
[13] |
Cheng Q.Mapping singularities with stream sediment geochemical data for prediction of undiscovered mineral deposits in Gejiu, Yunnan Province, China[J].Ore Geology Reviews, 2007, 32(1/2):314-324. http://www.sciencedirect.com/science/article/pii/S0169136806001119
|
[14] |
张夏林, 吴冲龙, 周琦, 等.基于勘查大数据和数据集市的锰矿床三维地质建模[J].地质科技通报, 2020, 39(4):113-121. http://dzkjqb.cug.edu.cn/CN/abstract/abstract9994.shtml
|
[15] |
Sprague K, Kemp E D, Wong W, et al.Spatial targeting using queries in a 3-D GIS environment with application to mineral exploration[J].Computers & Geosciences, 2006, 32(3):396-418. doi: 10.1016/j.cageo.2005.07.008
|
[16] |
赵鹏大, 胡旺亮, 李紫金.矿床统计预测[M].北京:地质出版社, 1994.
|
[17] |
左仁广, 夏庆霖, 张道军, 等.基于地质过程的闽西南马坑式铁多金属矿定量预测[J].地球科学:中国地质大学学报, 2012, 37(6):1183-1190. https://www.cnki.com.cn/Article/CJFDTOTAL-DQKX201206015.htm
|
[18] |
Bonham-Carter G F.Geographic information systems for geoscientists:Modelling with GIS[M].London:Pergamon, 1994.
|
[19] |
Carranza E J M.Natural resources research publications on geochemical anomaly and mineral potential mapping, and introduction to the special issue of papers in these fields[J].Natural Resources Research, 2017, 26(788):1-32. doi: 10.1007/s11053-017-9348-1
|
[20] |
Bishop C M.Pattern recognition and machine learning[M].Boston, MA:Springer, 2006.
|
[21] |
Stuart J R, Peter N.Artificial intelligence:A modern approach[M].New York:Pearson Education, Inc., 2020.
|
[22] |
Domingos P.The master algorithm:How the quest for the ultimate learning machine will remake our world[M].England:Reed Business Information Ltd., 2015.
|
[23] |
Kussul N, Lavreniuk M, Skakun S, et al.Deep learning classification of land cover and crop types using remote sensing data[J].IEEE Geoscience and Remote Sensing Letters, 2017, 14(5):778-782. doi: 10.1109/LGRS.2017.2681128
|
[24] |
左仁广.基于深度学习的深层次矿化信息挖掘与集成[J].矿物岩石地球化学通报, 2019, 38(1):53-60. https://www.cnki.com.cn/Article/CJFDTOTAL-KYDH201901005.htm
|
[25] |
Zuo R.Machine learning of mineralization-related geochemical anomalies:A review of potential methods[J].Natural Resources Research, 2017, 26(4):457-464. doi: 10.1007/s11053-017-9345-4
|
[26] |
Chung C F, Agterberg F P.Regression models for estimating mineral resources from geological map data[J].Journal of the International Association for Mathematical Geology, 1980, 12(5):473-488. doi: 10.1007/BF01028881
|
[27] |
Hosmer D H W, Lemeshow S.Applied logistic regression[J].Journal of the American Statistical Association, 2004, 85(411):81-82.
|
[28] |
胡涛, 樊鑫, 王硕, 等.基于逻辑回归模型和3S技术的思南县滑坡易发性评价[J].地质科技通报, 2020, 39(2):113-121. http://dzkjqb.cug.edu.cn/CN/abstract/abstract9980.shtml
|
[29] |
Chen C, Dai H, Liu Y, et al.Mineral prospectivity mapping integrating multi-source geology spatial data sets and logistic regression modelling[C]//IEEE international conference on spatial data mining and geographical knowledge services.IEEE, 2011.
|
[30] |
Porwal A, González-Álvarez I, Markwitz V, et al.Weights-of-evidence and logistic regression modeling of magmatic nickel sulfide prospectivity in the Yilgarn Craton, Western Australia[J].Ore Geology Reviews, 2010, 38(3):184-196. doi: 10.1016/j.oregeorev.2010.04.002
|
[31] |
周曙光, 周可法, 崔遥, 等.基于逻辑回归模型的化探异常信息识别研究:以克拉玛依地区为例[J].西北地质, 2016, 49(1):234-240. doi: 10.3969/j.issn.1009-6248.2016.01.024
|
[32] |
Müller B, Reinhardt J, Strickland M T.Neural networks[J].Physics of Neural Networks, 1992, 293(4):2588-2592.
|
[33] |
Nykänen V.Radial basis functional link nets used as a arospectivity mapping tool for orogenic gold deposits within the Central Lapland Greenstone Belt, Northern Fennoscandian Shield[J].Natural Resources Research, 2008, 17(1):29-48. doi: 10.1007/s11053-008-9062-0
|
[34] |
Oh H J, Lee S.Application of artificial neural network for gold-silver deposits potential mapping:A case study of Korea[J].Natural Resources Research, 2010, 19(2):103-124. doi: 10.1007/s11053-010-9112-2
|
[35] |
Zhao J, Chen S, Zuo R.Identifying geochemical anomalies associated with Au-Cu mineralization using multifractal and artificial neural network models in the Ningqiang district, Shaanxi, China[J].Journal of Geochemical Exploration, 2016, 164:54-64. doi: 10.1016/j.gexplo.2015.06.018
|
[36] |
Breiman L.Machine learn[J].Machine Learning, 2001, 45:5-32. doi: 10.1023/A:1010933404324
|
[37] |
Hariharan S, Tirodkar S, Porwal A, et al.Random forest-based prospectivity modelling of greenfield terrains using sparse deposit data:An example from the Tanami region, western Australia[J].Natural Resources Research, 2017, 26(1):1-19. doi: 10.1007/s11053-016-9319-y
|
[38] |
Carranza E J M, Laborte A G.Data-driven predictive modeling of mineral prospectivity using random forests:A case study in Catanduanes Island(Philippines)[J].Natural Resources Research, 2015, 25(1):1-16.
|
[39] |
Rodriguez-Galiano V F, Chica-Olmo M, Chica-Rivas M.Predictive modelling of gold potential with the integration of multisource information based on random forest:A case study on the Rodalquilar area, Southern Spain[J].International Journal of Geographical Information Science, 2014, 28(7):1336-1354. doi: 10.1080/13658816.2014.885527
|
[40] |
Vapnik V.The nature of statistical learning theory springer new york google scholar[M].New York:Springer-verlag, 1995.
|
[41] |
Burges C J C.A tutorial on support vector machines for pattern recognition[J].Data Mining and Knowledge Discovery, 1998, 2(2):121-167. doi: 10.1023/A:1009715923555
|
[42] |
Vapnik V.Pattern recognition using generalized portrait method[J].Automation & Remote Control, 2008, 24(24):774-780. http://ci.nii.ac.jp/naid/10030529499
|
[43] |
Cortes C, Vapnik V.Support-vector networks[J].Machine Learning, 1995, 20(3):273-297. http://ci.nii.ac.jp/naid/10020879413
|
[44] |
Zuo R, Carranza E J M.Support vector machine:A tool for mapping mineral prospectivity[J].Computers &Geosciences, 2011, 37(12):1967-1975. http://dl.acm.org/citation.cfm?id=2073002
|
[45] |
韩创益, 王恩德, 夏建明, 等.基于贝叶斯推理的LS-SVM矿产资源定量预测[J].东北大学学报:自然科学版, 2017, 38(11):1633-1636. doi: 10.12068/j.issn.1005-3026.2017.11.023
|
[46] |
Wang J, Zuo R, Xiong Y.Mapping mineral prospectivity via semi-supervised random forest[J].Natural Resources Research, 2020, 29(1):189-202. doi: 10.1007/s11053-019-09510-8
|
[47] |
Granek J, Haber E.Data mining for real mining: A robust algorithm for prospectivity mapping with uncertainties[C]//Proceedings of the 2015 SIAM International Conference on Data Mining.Society for Industrial and Applied Mathematics, 2015.
|
[48] |
Shahshahani B M, Landgrebe D A.The effect of unlabeled samples in reducing the small sample size problem and mitigating the Hughes phenomenon[J].IEEE Transactions on Geoscience and remote sensing, 1994, 32(5):1087-1095. doi: 10.1109/36.312897
|
[49] |
Joachims T.Transductive inference for text classification using support vector machines[C]//Proceedings of the sixteenth international conference on machine learning.San Francisco: Morgan Kaufmann, 1999.
|
[50] |
Grandvalet Y, Bengio Y.Semi-supervised learning by entropy minimization[J].Advances in Neural Information Processing Systems.2004, 17:529-536. http://dl.acm.org/citation.cfm?id=2976040.2976107
|
[51] |
Blum A, Chawla S.Learning from labeled and unlabeled data using graph mincuts[C]//Anon.Proceedings of the 18th international conference on machine learning(ICML), Williamston, MA: Morgan Kaufmann, 2001.
|
[52] |
Nykänen V, Lahti I, Niiranen T, et al.Receiver operating characteristics(ROC) as validation tool for prospectivity models:A magmatic Ni-Cu case study from the Central Lapland Greenstone Belt, Northern Finland[J].Ore Geology Reviews, 2015, 71:853-860. doi: 10.1016/j.oregeorev.2014.09.007
|
[53] |
Carranza E J M.Data-driven evidential belief modeling of mineral potential using few prospects and evidence with missing values[J].Natural Resources Research, 2015, 24(3):291-304. doi: 10.1007/s11053-014-9250-z
|
[54] |
Zhou Z H, Liu X Y.Training cost-sensitive neural networks with methods addressing the class imbalance problem[J].IEEE Transactions on Knowledge and Data Engineering, 2005, 18(1):63-77. http://ieeexplore.ieee.org/document/1549828/citations?tabFilter=papers
|
[55] |
Berardi V L, Zhang G P.The effect of misclassification costs on neural network classifiers[J].Decision Sciences, 1999, 30(3):659-682. doi: 10.1111/j.1540-5915.1999.tb00902.x
|
[56] |
Viaene S, Dedene G.Cost-sensitive learning and decision making revisited[J].European Journal of Operational Research, 2005, 166(1):212-220. doi: 10.1016/j.ejor.2004.03.031
|
[57] |
Kukar M, Kononenko I.Cost-sensitive learning with neural networks[M]//Brighton, UK: ECAI, 1998.
|
[58] |
Xu J, Cao Y, Li H, et al.Cost-sensitive learning of SVM for ranking[C]//Anon.European conference on machine learning.Berlin, Heidelberg: Springer, 2006.
|
[59] |
Jiang L, Li C, Cai Z, et al.Sampled bayesian network classifiers for class-imbalance and cost-sensitive learning[C]//Anon.2013 IEEE 25th International Conference on Tools with Artificial Intelligence.Herndon, VA, USA: IEEE, 2013.
|
[60] |
Zadrozny B, Langford J, Abe N.Cost-sensitive learning by cost-proportionate example weighting[M]//Melbourne, F L, USA: IEEE, 2003.
|
[61] |
Jiang L, Li C, Wang S.Cost-sensitive Bayesian network classifiers[J].Pattern Recognition Letters, 2014, 45:211-216. doi: 10.1016/j.patrec.2014.04.017
|
[62] |
Xiong Y, Zuo R.Effects of misclassification costs on mapping mineral prospectivity[J].Ore Geology Reviews, 2017, 82:1-9. doi: 10.1016/j.oregeorev.2016.11.014
|
[63] |
Zuo R, Zhang Z, Zhang D, et al.Evaluation of uncertainty in mineral prospectivity mapping due to missing evidence:A case study with skarn-type Fe deposits in Southwestern Fujian Province, China[J].Ore Geology Reviews, 2015, 71:502-515. doi: 10.1016/j.oregeorev.2014.09.024
|
[64] |
An P, Moon W M, Bonham-Carter G F.Uncertainty management in integration of exploration data using the belief function[J].Nonrenewable Resources, 1994, 3(1):60-71. doi: 10.1007/BF02261716
|
[65] |
Bárdossy G, Fodor J.Review of the main uncertainties and risks in geology[C]//Anon.Evaluation of uncertainties and risks in geology.Berlin: Springer, 2004.
|
[66] |
Kraipeerapun P, Fung C C, Brown W.Assessment of uncertainty in mineral prospectivity prediction using interval neutrosophic set[C]//Anon.International conference on computational and information science.Berlin: Springer, 2005.
|
[67] |
左仁广.基于地质异常的矿产资源定量化预测与不确定性评价[D].武汉: 中国地质大学(武汉), 2009.
|
[68] |
Yousefi M, Kreuzer O P, Nykänen V, et al.Exploration information systems-a proposal for the future use of GIS in mineral exploration targeting[J].Ore Geology Reviews, 2019, 111:103005. doi: 10.1016/j.oregeorev.2019.103005
|
[69] |
Mihalasky M J, Bonham-Carter G F.Lithodiversity and its spatial association with metallic mineral sites, Great Basin of Nevada[J].Natural Resources Research, 2001, 10(3):209-226. doi: 10.1023/A:1012569225111
|
[70] |
Yousefi M, Carranza E J M.Prediction-area(P-A) plot and C-A fractal analysis to classify and evaluate evidential maps for mineral prospectivity modeling[J].Computers & Geosciences, 2015, 79:69-81. http://www.sciencedirect.com/science/article/pii/S0098300415000564
|
[71] |
Roshanravan B, Aghajani H, Yousefi M, et al.An improved prediction area plot for prospectivity analysis of mineral deposits[J].Natural Resources Research, 2019, 28(3):1089-1105. doi: 10.1007/s11053-018-9439-7
|
[72] |
Parsa M, Maghsoudi A, Yousefi M, et al.Prospectivity modeling of porphyry-Cu deposits by identification and integration of efficient mono-elemental geochemical signatures[J].Journal of African Earth Sciences, 2016, 114:228-241. doi: 10.1016/j.jafrearsci.2015.12.007
|
[73] |
Xiong Y, Zuo R.GIS-based rare events logistic regression for mineral prospectivity mapping[J].Computers & Geosciences, 2018, 111:18-25. http://www.sciencedirect.com/science/article/pii/S0098300417305447
|
[74] |
Ross Z E, Meier M A, Hauksson E.P wave arrival picking and first-motion polarity determination with deep learning[J].Journal of Geophysical Research:Solid Earth, 2018, 123(6):5120-5129. doi: 10.1029/2017JB015251
|
[75] |
Jiang G Q, Xu J, Wei J.A deep learning algorithm of neural network for the parameterization of typhoon-ocean feedback in typhoon forecast models[J].Geophysical Research Letters, 2018, 45(8):3706-3716. doi: 10.1002/2018GL077004
|
[76] |
Xiong Y, Zuo R.Recognition of geochemical anomalies using a deep autoencoder network[J].Computers & Geosciences, 2016, 86:75-82. http://www.sciencedirect.com/science/article/pii/S0098300415300728
|
[77] |
Zuo R, Xiong Y.Big data analytics of identifying geochemical anomalies supported by machine learning methods[J].Natural Resources Research, 2018, 27(1):5-13. doi: 10.1007/s11053-017-9357-0
|
[78] |
周密.福建省崇(安)浦(城)地区火山岩型铀矿致矿信息提取与远景预测[D].武汉: 中国地质大学(武汉), 2012.
|
[79] |
Zhao J, Chen S, Zuo R, et al.Controls on and prospectivity mapping of volcanic-type uranium mineralization in the Pucheng district, NW Fujian, China[J].Ore Geology Reviews, 2019, 112:103028. doi: 10.1016/j.oregeorev.2019.103028
|