Volume 40 Issue 1
Jan.  2021
Turn off MathJax
Article Contents
Yin Xiangdong, Jiang Shu, Wu Peng, Gao Wei. Features of the acid and alkaline diagenetic environment of tight sandstones and the control of the reservoir physical properties: A case study of the Linxing and Shenfu district, eastern Ordos Basin[J]. Bulletin of Geological Science and Technology, 2021, 40(1): 142-151. doi: 10.19509/j.cnki.dzkq.2021.0109
Citation: Yin Xiangdong, Jiang Shu, Wu Peng, Gao Wei. Features of the acid and alkaline diagenetic environment of tight sandstones and the control of the reservoir physical properties: A case study of the Linxing and Shenfu district, eastern Ordos Basin[J]. Bulletin of Geological Science and Technology, 2021, 40(1): 142-151. doi: 10.19509/j.cnki.dzkq.2021.0109

Features of the acid and alkaline diagenetic environment of tight sandstones and the control of the reservoir physical properties: A case study of the Linxing and Shenfu district, eastern Ordos Basin

doi: 10.19509/j.cnki.dzkq.2021.0109
  • Received Date: 08 Jan 2020
  • The pH value of plaeofluid exerts great influence on the formation of the secondary pores of sandstones.In the paper, the control of the acid and alkaline diagenetic fluid environment on the reservoir quality was analyzed in the Upper Paleozoic tight sandstones in the Ordos basin.Based on the plenty of survey of casting thin section, scanning electron microscope, X-ray diffraction, routine testing of physical properties, and high pressure mercury injection, the characteristics of petrology and mineralogy, physical properties, diagenesis, genetic types of pores, and pore-throat structure within the Upper Paleozoic tight sandstones were detailedly investigated in the Linxing and Shenfu district, eastern Ordos Basin.The identification, zonage, and distribution of the acid and alkaline diagenetic environment within tight sandstones as well as the evolution of diagenetic fluid environment and its reponse of the physical properties were investigated.Results showed that the upper strata underwent a diagenetic fluid evolution of alkaline-acid-alkaline mode during the burial process, whereas the lower strata experienced a mode of acid-alkaline.Acid diagenetic environment was characterized by feldspar dissolution, quartz overgrowth, and deposition of authigenic kaolinite, in which feldspar dissolution pores, intercrystalline pores of clay minerals developed with relatively large pore radius and better reservoir quality.Alkaline diagenetic environment was featured by quartz dissolution and deposition of authigenic chlorite, in which quartz dissolution pores and intercrystalline pores of clay minerals developed with relatively small pore radius and poor reservoir quality.The case of transitional zone of acid and alkaline zone(TZAA) falls in between acid zone(AZ) and alkaline zone(AlZ).Nevertheless, the physical properties are best in the AZ, followed by TZAA.The distribution of the AZ, AIZ and TAZZ and their responds to the physical properties are significant to the reservoir evaluation.

     

  • loading
  • [1]
    戴金星, 倪云燕, 吴小奇.中国致密砂岩气及在勘探开发上的重要意义[J].石油勘探与开发, 2012, 39(3):257-262. https://www.cnki.com.cn/Article/CJFDTOTAL-SKYK201203002.htm
    [2]
    李剑, 魏国齐, 谢增业.中国致密砂岩大气田成藏机理与主控因素:以鄂尔多斯盆地和四川盆地为例[J].石油学报, 2013, 34(增刊1):14-24. https://www.cnki.com.cn/Article/CJFDTOTAL-SYXB2013S1002.htm
    [3]
    吴鹏, 高计县, 郭俊超.鄂尔多斯盆地东缘临兴地区太原组桥头砂岩层序地层及沉积特征[J].石油与天然气地质, 2018, 39(1):66-67. https://www.cnki.com.cn/Article/CJFDTOTAL-SYYT201801008.htm
    [4]
    谢英刚, 孟尚志, 万欢.临兴地区煤系地层多类型天然气储层地质条件分析[J].煤炭科学技术, 2015, 43(9):71-75. https://www.cnki.com.cn/Article/CJFDTOTAL-MTKJ201509013.htm
    [5]
    Surdam R C, Boese S W, Crossey L J.The chemistry of secondary porosity[J].AAPG Mem., 1984, 37:127-150. http://www.researchgate.net/publication/247807955_The_Chemistry_of_Secondary_Porosity
    [6]
    Lundegard P D, Land L S, Galloway W E.Problem of secondary porosity:Frio Formation(Oligocene), Texas Gulf Coast[J].Geology, 1984, 12:399-402. doi: 10.1130/0091-7613(1984)12<399:POSPFF>2.0.CO;2
    [7]
    Surdam R C, Crossey L J, Hangen E S, et al.Organic-inorganic interaction and sandstone diagenesis[J].AAPG Bulletin, 1989, 73(1):1-23. http://ci.nii.ac.jp/naid/80004430238
    [8]
    Giles M R.Mass transfer and problems of secondary porosity creation in deeply buried hydrocarbon reservoirs[J].Marine and Petroleum Geology, 1987, 4(3):188-204. doi: 10.1016/0264-8172(87)90044-4
    [9]
    Stoessell R K, Pittman E D.Secondary porosity revisited:The chemistry of feldspar dissolution by carboxylic acids and anions[J].AAPG Bulletin, 1990, 74(12):1795-1805. http://www.researchgate.net/publication/239916514_Secondary_porosity_revisited_The_chemistry_of_feldspar_dissolution_by_carboxylic_acids_and_anions
    [10]
    Surdam R C, Jiao Z S, MacGowan D B.Redox reaction involving hydrocarbons and internal oxidants:A mechanism for significant porosity enhancement in sandstones[J].AAPG Bulletin, 1993, 77(9):1509-1518. doi: 10.1306/bdff8ed4-1718-11d7-8645000102c1865d
    [11]
    孟元林, 修洪文, 孟凡晋, 等.用泥岩热解资料预测储层次生孔隙发育带[J].天然气工业, 2008, 28(10):41-43. doi: 10.3787/j.issn.1000-0976.2008.10.011
    [12]
    王艳忠.东营凹陷北带古近系次生孔隙发育带成因机制及演化模式[D].山东青岛: 中国石油大学(华东), 2010.
    [13]
    Yuan G H, Cao Y C, Gluyas J, et al.Reactive transport modeling of coupled feldspar dissolution and secondary mineral precipitation and its implication for diagenetic interaction in sandstones[J].Geochimicaet Cosmochimica Acta, 2017, 207:232-255. doi: 10.1016/j.gca.2017.03.022
    [14]
    杨康, 李红, 周雪, 等.鄂尔多斯盆地志丹地区长2储层成岩作用及其对孔隙度演化的影响[J].地质科技情报, 2019, 38(6):74-81. https://www.cnki.com.cn/Article/CJFDTOTAL-DZKQ201806009.htm
    [15]
    徐国盛, 崔恒远, 刘勇, 等.东海盆地西湖凹陷古近系花港组砂岩储层致密化与油气充注关系[J].地质科技通报, 2020, 39(3):20-29. http://dzkjqb.cug.edu.cn/CN/abstract/abstract10019.shtml
    [16]
    邱隆伟, 姜在兴, 陈文学.一种新的储层孔隙成因类型:石英溶解型次生孔隙[J].沉积学报, 2002, 20(4):621-627. doi: 10.3969/j.issn.1000-0550.2002.04.014
    [17]
    钟大康, 朱筱敏, 周新源, 等.初论塔里木盆地砂岩储层中SiO2的溶蚀类型及其机理[J].地质科学, 2007, 42(2):403-414. doi: 10.3321/j.issn:0563-5020.2007.02.014
    [18]
    邱隆伟, 徐宁宁, 周涌沂, 等.鄂尔多斯盆地大牛地地区致密砂岩石英溶解作用及其对优质储集层的影响[J].矿物岩石地球化学通报, 2015, 34(1):38-44. doi: 10.3969/j.issn.1007-2802.2015.01.004
    [19]
    曲希玉, 陈修, 邱隆伟, 等.石英溶解型次生孔隙的成因及其对储层的影响:以大牛地气田上古生界致密砂岩储层为例[J].石油与天然气地质, 2015, 36(5):804-812. https://www.cnki.com.cn/Article/CJFDTOTAL-SYYT201505014.htm
    [20]
    傅宁, 杨树春, 贺清, 等.鄂尔多斯盆地东缘临兴-神府区块致密砂岩气高效成藏条件[J].石油学报, 2016, 37(增刊1):111-121. https://www.cnki.com.cn/Article/CJFDTOTAL-SYXB2016S1011.htm
    [21]
    孙晓伟, 郭睿, 田中元, 等.孔隙型碳酸盐岩储集层分类及主控因素:以伊拉克西古尔纳油田Mishrif组为例[J].地质科技情报, 2017, 36(3):150-155. https://www.cnki.com.cn/Article/CJFDTOTAL-DZKQ201703021.htm
    [22]
    梁建设, 王琪, 郝乐伟, 等.西湖凹陷渐新统花港组储层砂岩成岩环境演化探讨[J].天然气地球科学, 2012, 23(4):673-679. https://www.cnki.com.cn/Article/CJFDTOTAL-TDKX201204009.htm
    [23]
    左智峰, 熊鹰, 何为, 等.鄂尔多斯盆地中部马五段盐下储层成岩作用与孔隙演化[J].地质科技情报, 2019, 38(5):155-164. https://www.cnki.com.cn/Article/CJFDTOTAL-DZKQ201905016.htm
    [24]
    祝海华, 钟大康, 姚泾利, 等.碱性环境成岩作用及对储集层孔隙的影响:以鄂尔多斯盆地长7段致密砂岩为例[J].石油勘探与开发, 2015, 42(1):51-58. https://www.cnki.com.cn/Article/CJFDTOTAL-SKYK201501007.htm
    [25]
    Blatt H, Middleton G V, Murray R C.Origin of sedimentary rocks[M].New Jersey:Prentice Hall, 1972.
    [26]
    张善文, 袁静, 隋风贵, 等.东营凹陷北部沙河街组四段深部储层多重成岩环境及演化模式[J].地质科学, 2008, 43(3):576-587. doi: 10.3321/j.issn:0563-5020.2008.03.012
    [27]
    牛栓文, 李继岩.东营凹陷东段始新统红层储层多重成岩环境及演化模式[J].石油与天然气地质, 2014, 35(5):661-668. https://www.cnki.com.cn/Article/CJFDTOTAL-SYYT201405013.htm
    [28]
    李继岩.渤海湾盆地东营凹陷东段红层储层成岩环境时空演化及成岩孔隙演化[J].石油与天然气地质, 2017, 38(1):90-97. https://www.cnki.com.cn/Article/CJFDTOTAL-SYYT201701011.htm
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article Views(873) PDF Downloads(5101) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return